B.Tech. MECHANICAL ENGINEERING (COMPUTER INTEGRATED MANUFACTURING)

Gロr13

Term-End Examination
June, 2018

BME-001 : ENGINEERING MATHEMATICS-I

Note: All questions are compulsory. Use of statistical tables and calculator is permitted.

1. Answer any five of the following :
(a) Evaluate the limit

$$
\operatorname{Lim}_{x \rightarrow \infty} x \tan \left(\frac{1}{x}\right)
$$

(b) If $y=\cos ^{-1}\left(\frac{1-x^{2}}{1+x^{2}}\right)$, compute $\frac{d y}{d x}$.
(c) If $f(x, y, z)=0$,

$$
\text { prove that }\left(\frac{\partial z}{\partial x}\right)_{y}\left(\frac{\partial y}{\partial z}\right)_{x}\left(\frac{\partial x}{\partial y}\right)_{z}=-1
$$

(d) If $y_{1}=\frac{x_{2} x_{3}}{x_{1}}, y_{2}=\frac{x_{3} x_{1}}{x_{2}}, y_{3}=\frac{x_{1} x_{2}}{x_{3}}$,
show that $\frac{\partial\left(\mathrm{y}_{1}, \mathrm{y}_{2}, \mathrm{y}_{3}\right)}{\partial\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \mathrm{x}_{3}\right)}=4$.
(e) Solve the differential equation
$\left(3 x^{2}+2 e^{y}\right) d x+\left(2 x e^{y}+3 y^{2}\right) d y=0$.
(f) Solve the differential equation $\frac{d y}{d x}+y \tan x=x^{2} e^{x} \cos x$.
2. Answer any four of the following :
$4 \times 4=16$
(a) Find the angle between the surfaces $x \log z=y^{2}-1$ and $x^{2} y=2-z$ at the point (1, 1, 1).
(b) If $\vec{r}=x \hat{i}+y \hat{j}+z \hat{k}$ and $r=|\vec{r}|$, show that $\operatorname{div}\left(\frac{\vec{r}}{r^{3}}\right)=0$.
(c) Show that the vector

$$
\vec{v}=\left(y^{2}-x^{2}+y\right) \hat{i}+x(2 y+1) \hat{j}
$$

is irrotational.
(d) Evaluate the surface integral $\iint_{S} \vec{F} \cdot \hat{n} d A$ where $\vec{F}=z^{2} \hat{i}+x y \hat{j}-y^{2} \hat{k}$ and S is the portion of the surface of the cylinder $x^{2}+y^{2}=36,0 \leq z \leq 4$ included in the first octant.
(e) Let D be the region bounded by the closed cylinder $x^{2}+y^{2}=16, z=0$ and $z=4$. Verify the divergence theorem if $v=3 x^{2} \hat{i}+6 y^{2} \hat{j}+z \hat{k}$.
(f) Evaluate the integral $\iint_{S}(\nabla \times \vec{v}) \cdot \hat{n} d A$ by

Stoke's theorem

$$
\vec{v}=\left(x^{2}-y^{2}\right) \hat{i}+\left(y^{2}-x^{2}\right) \hat{j}+z \hat{k}
$$

S is the portion of the surface
$x^{2}+y^{2}-2 b y+b z=0$, where b is constant, whose boundary lies in the xy plane.
3. Answer any six of the following :
(a) Find the inverse and adjoint of the matrix

$$
A=\left[\begin{array}{ccc}
1 & 1 & 3 \\
1 & 3 & -3 \\
-2 & -4 & -4
\end{array}\right]
$$

(b) Find the rank of the matrix

$$
A=\left[\begin{array}{rrr}
1 & 5 & 4 \\
0 & 3 & 2 \\
2 & 3 & 10
\end{array}\right]
$$

(c) Find the non-singular matrices \mathbf{P} and \mathbf{Q} such that the normal form of A is PAQ, where

$$
A=\left[\begin{array}{cccc}
1 & 3 & 6 & -1 \\
1 & 4 & 5 & 1 \\
1 & 5 & 4 & 3
\end{array}\right]
$$

(d) Test if the system is consistent or inconsistent. If consistent then find the solution

$$
\begin{aligned}
& 3 x_{1}+2 x_{2}+x_{3}=3,2 x_{1}+x_{2}+x_{3}=0 \\
& 6 x_{1}+2 x_{2}+4 x_{3}=6 .
\end{aligned}
$$

(e) Find the eigenvalues of the matrix

$$
A=\left[\begin{array}{ccc}
1 & 2 & 2 \\
0 & 2 & 1 \\
-1 & 2 & 2
\end{array}\right]
$$

(f) Verify the Cayley-Hamilton theorem and find the inverse of matrix

$$
A=\left[\begin{array}{lll}
1 & 2 & 3 \\
2 & 4 & 5 \\
3 & 5 & 6
\end{array}\right]
$$

(g) Show that

$$
\mathrm{A}=\left[\begin{array}{cc}
2 & 3+4 \mathrm{i} \\
3-4 \mathrm{i} & 2
\end{array}\right]
$$

is Hermitian.
(h) Solve by the Cramer's rule, $x+y+z=6$, $2 x-3 y+4 z=8, x-y+2 z=5$.
4. Answer any four of the following :
(a) Out of 10 girls in a class, 3 have blue eyes. If 2 of the girls are chosen at random, what is the probability that (i) both have blue eyes? (ii) neither has blue eyes?
(b) If A and B be events with $\mathrm{P}(\mathrm{A})=\frac{1}{3}, \mathrm{P}(\mathrm{B})=\frac{1}{4}$ and $P(A \cup B)=\frac{1}{2}$, find (i) $P(A / B)$. (ii) $P(B / A)$.
(c) The probability that a pen manufactured by a company will be defective is $0 \cdot 2$. If 2 such pens are examined, find the probability that (i) exactly two, (ii) at least two, and (iii) none will be defective.
(d) A manufacturer of cotter pins knows that 5% of his product is defective. Pins are sold in boxes of 100 . He guarantees that not more than 10 pins will be defective. Determine the probability that a box will fail to meet the guárantee.
(e) Can we conclude that the two population variances are equal for the following data of post graduates that passed out from a State and Private university :

State : 83508260813083408070
Private: 789081407900795078407920
(f) It has previously been recorded that the average depth of the ocean at a particular region is 67.4 fathoms. Is there reason to believe this at 0.01 level of significance, if the reading at 40 random locations in that particular region showed a mean of $69 \cdot 3$ with s.d. of $5 \cdot 4$ fathoms?

