B．Tech．－VIEP－ELECTRICAL ENGINEERING （BTELVI）

Term－End Examination

June， 2018

BIEE－024 ：POWER ELECTRONICS

$$
\text { Time : } 3 \text { hours }
$$

Maximum Marks ： 70
Note：Attempt any seven questions．All questions carry equal marks．Use of scientific calculator is permitted．Assume suitable data，wherever not provided．

1．Discuss the two transistor model of thyristor． Derive an expression for the anode current．10

2．Describe the working of a single－phase full converter with RL load．Draw the waveforms of supply voltage，load voltage，load current and voltage across the thyristor．10

3．A 3－phase M－3 converter is operated from a 3－phase， $230 \mathrm{~V}, 50 \mathrm{~Hz}$ supply with load resistance $R=10 \Omega$ ．An average output voltage of 50% of the maximum possible output voltage is required． Determine
（a）firing angle
（b）average and rms value of load current
（c）rectification efficiency．
4. Describe a voltage commutated chopper with relevant current and voltage waveform as a function of time. Show that effective on period for this chopper is load dependent.

5. A step down chopper, fed from 220 V dc is
connected to $R L$ load with $R=10 \Omega$ and
$\mathrm{L}=150 \mathrm{mH}$. Chopper frequency is 1250 Hz and
duty cycle is 0.5 . Calculate
(a) Maximum and minimum voltage of load current
(b) Maximum value of ripple current
(c) Average and rms values of load current
(d) RMS value of chopper current.
6. With a neat circuit diagram explain the working of a current source inverter.
7. Discuss the working principle of single-phase to
single-phase step up cycloconverter with the help
of bridge type configurations.
8. What is commutation ? Discuss the operation of
impulse commutation with the help of a neat
circuit and relevant waveforms. 10
BIEE-024 2
9. The full bridge inverter has a source voltage $\mathrm{V}_{\mathrm{dc}}=220 \mathrm{~V}$. The inverter supplies an RLC load with $\mathrm{R}=10 \Omega, \mathrm{~L}=10 \mathrm{mH}$ and $\mathrm{C}=52 \mu \mathrm{~F}$. The inverter frequency is 400 Hz . Determine
(a) The rms load current at fundamental frequency
(b) The rms value of load current
(c) The power output
(d) Average value of supply current
10. Write short notes on any two of the following :
$2 \times 5=10$
(a) VI characteristics of SCR
(b) TRIAC
(c) di/dt and dv/dt protection of SCR
(d) On-off control of AC voltage controller
