No. of Printed Pages: 3

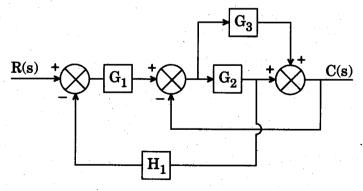
BIEE-021

B.Tech. - VIEP - ELECTRICAL ENGINEERING (BTELVI)

Term-End Examination June. 2018

00273

BIEE-021: CONTROL SYSTEMS

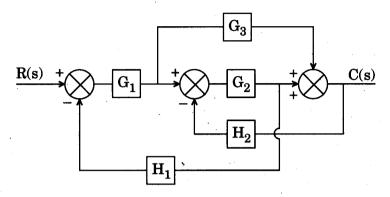

Time: 3 hours

Maximum Marks: 70

Note: Attempt any **five** questions. All questions carry equal marks. Use of scientific calculator is permitted.

- 1. (a) Explain how control systems are classified.

 Distinguish between feed-back control system and feed-forward control system.
 - (b) Determine the transfer function C(s)/R(s) from the block diagram shown in the following figure:


BIEE-021

1

P.T.O.

2. Determine the transfer function relating C and R for the block diagram given in the figure below, use the Mason's Gain formula.

14

3. (a) A closed loop control system has the characteristic equation given by

$$s^3 + 4.5s^2 + 3.5s + 1.5 = 0.$$

Investigate the Routh-Hurwitz criterion.

Ū

7

(b) Define the following terms:

4×2=8

- (i) Rise time
- (ii) Peak time
- (iii) Settling time
- (iv) Maximum overshoot
- 4. (a) What is a polar plot? Explain the polar plot for type 0 and type 1 system.
 - (b) What is compensation ? Discuss various types of compensators.

5. Sketch the Bode plot for the open loop transfer function for the unity feedback system given below and discuss about its stability.

14

$$G(s) = \frac{50}{(s+1)(s+2)}$$

6. (a) What are the advantages of state space approach over transfer function as well as graphical approach for the analysis of control system?

7

(b) Explain the concept of controllability and observability in detail.

7

- 7. Write short notes on any two of the following: $2\times7=14$
 - (a) PID Controllers
 - (b) DC Servo-Motors
 - (c) Concept of Absolute Stability