B.Tech. - VIEP - ELECTRICAL ENGINEERING (BTELVI)

DDB23 Term-End Examination

June, 2018

BIEE-017 : DIGITAL ELECTRONICS

Time : 3 hours
Maximum Marks : 70
Note: Attempt any seven questions. All questions carry equal marks. Missing data, if any, may be suitably assumed. Use of scientific calculator is permitted.

1. Simplify the following using Boolean algebra : $5 \times 2=10$
(a) $\overline{\mathrm{A}}+\mathrm{A} \overline{\mathrm{B}} \mathrm{C}+\mathrm{ABC}$
(b) $\overline{\mathrm{A}} \overline{\mathrm{B}} \overline{\mathrm{C}}+\overline{\mathrm{A}} \mathrm{BC}+\mathrm{ABC}+\mathrm{A} \overline{\mathrm{B}} \overline{\mathrm{C}}+\mathrm{A} \overline{\mathrm{B}} \mathbf{C}$
(c) $\mathrm{ABC}+\mathrm{AB} \overline{\mathrm{C}}+\mathrm{A} \overline{\mathrm{B}} \mathrm{C}$
(d) $\mathrm{ABCD}+\mathrm{A} \overline{\mathrm{B}} \mathrm{CD}+\mathrm{ABC} \overline{\mathrm{D}}+\mathrm{AB} \overline{\mathrm{C}} \mathrm{D}+\mathrm{AB} \overline{\mathrm{C}} \overline{\mathrm{D}}$
(e) $\overline{\mathrm{A} \overline{\mathrm{B}} \mathrm{C}+\mathrm{AB} \overline{\mathrm{C}}}$
2. (a) Use Karnaugh map to simplify and implement

$$
\mathrm{F}(\mathrm{~A}, \mathrm{~B}, \mathrm{C}, \mathrm{D})=\Sigma \mathrm{m}(0,4,10,11,14,15)
$$

(b) Draw the truth table and logic circuit of the following :

$$
\mathrm{Y}=\mathrm{AB}+\mathrm{A}+\mathrm{A} \overline{\mathrm{~B}} \mathrm{C}+\mathrm{ABC}
$$

3. (a) Design a full adder using half adder. 5
(b) Implement a half subtractor using NAND gates only.5
4. (a) What is meant by SOP and POS forms of Boolean expressions? Give examples. 5
(b) Reduce and find the simplified SOP form 5

$$
\mathrm{Y}=\pi \mathrm{M}(0,1,2,3,4,6,10,11,13)
$$

5. Design a ring counter which can count ' 16 ' states. 10
6. Draw and explain the block diagram of architecture of 8086.
7. (a) What are the various addressing modes of 8085 ?
(b) What is race-around condition in flip-flops? How can Master-Slave JK flip-flop eliminate it?
$\begin{array}{lll}\text { 8. Design a 2-bit magnitude comparator using } \\ \text { NAND gates only. } & \\ & \end{array}$
8. What are shift-registers ? Explain 'SISO' shift register in detail. 10
9. Write short notes on any two of the following : $2 \times 5=10$
(a) Interrupts in 8085
(b) 'BCD' Adder
(c) Differences between Combinational and Sequential Circuits
