B.Tech. - VIEP - ELECTRICAL ENGINEERING (BTELVI)

Term-End Examination
June, 2018

BIEE-009 : APPLIED ELECTROMAGNETICS

Time: 3 hours
Maximum Marks : 70
Note: Attempt any five questions. Assume the necessary data, if not given in the question. Symbols have their usual meanings. Use of scientific calculator is permitted.

1. (a) Derive continuity equation for time varying fields. Explain its significance in electromagnetics.
(b) Why is stub machine required in transmission lines? Explain the principle of single and double stub matching.
2. (a) Explain physical interpretation of
(i) Gradient of a scalar
(ii) Divergence of Vector

Give their applications in electromagnetics. 7
(b) Explain the concept of polarization in dielectric materials.
3. (a) State boundary relations for
(i) Electric field
(ii) Magnetic field
across a common boundary separated by two different media.
(b) State Maxwell's equations in their general time varying form in
(i) Differential form
(ii) Integral form

Specialize these equation for :
(i) good conductors and good dielectrics
(ii) time harmonically varying fields
(iii) static fields.
4. (a) Given that $\vec{F}=\frac{A}{r^{4}} \cdot \sin ^{2} \phi \hat{i} r$, evaluate both sides of $\stackrel{r}{\text { divergence }}$ theorem for regions between spherical surface $r=2$ and $r=4$.
(b) State and explain Biot Savart's law as applicable for different current densities.
5. (a) Define the following as they are used in electromagnetic waves:
(i) Propagation constant
(ii) Wavelength
(iii) Transverse wave
(iv) Skin depth
(b) Find characteristic impedance and propagation constant for a transmission line having the following parameters : $\mathrm{r}=80 \Omega / \mathrm{km}, \mathrm{G}=1.5 \times 10^{-6} \mathrm{mho} / \mathrm{km}$, frequency $=1,000 \mathrm{~Hz}, \mathrm{C}=0.06 \mu \mathrm{~F} / \mathrm{km}$, $\mathrm{L}=0.015 \mathrm{H} / \mathrm{km}$
6. (a) Differentiate between :
(i) Transmission lines and Cables
(ii) Lossless line and Distortionless line
(b) Explain the following: 7
(i) Mismatch line
(ii) Quarter wave transformer
7. A vector field is given by

$$
\overrightarrow{\mathrm{B}}=\hat{\mathrm{a}}_{\mathrm{z}} \frac{\cos \phi}{\mathrm{r}} .
$$

Verify Stokes theorem for a segment of a cylindrical surface defined by

$$
r=2, \frac{\pi}{3} \leq \phi \leq \frac{\pi}{2}, 0 \leq z \leq 3 .
$$

