No. of Printed Pages : 4

BIEL-014

B.Tech. - VIEP - ELECTRONICS AND COMMUNICATION ENGINEERING (BTECVI)

DD3D3 Term-End Examination June, 2018

BIEL-014 : ANALOG COMMUNICATION

Time : 3 hours

Maximum Marks : 70

Note : Attempt any **seven** questions. All questions carry equal marks. Use of scientific calculator is allowed.

1.	(a)	Explain and distinguish between auto-correlation and cross-correlation	•
		functions.	5
•	(b)	Explain the properties of Gaussian random	
		process.	5
2.	(a)	Explain the central limit theorem.	2
	(b)	Differentiate between signal energy and signal power.	3
	(c)	Describe the classification of signals with	
		expression.	5
BIEL-014		1 P.T	.0.

- **3.** (a) What is amplitude modulation ? Explain with suitable example.
 - (b) How do you generate AM waves ? Explain any one technique.

 $\mathbf{2}$

4

4

5

5

5

5

- (c) How do you detect AM waves ? Explain any one technique.
- 4. (a) What is single-sideband modulation ? Explain with a technique how to obtain SSB modulation.
 - (b) How do you detect SSB signals with a carrier ? Explain with the help of SSB modulation systems.
- 5. (a) Explain the generation principle of vestigial side-band modulation (VSB).
 - (b) The carrier frequency of a certain VSB signal is $f_c = 20$ kHz, and the baseband signal bandwidth is 6 kHz. The VSB shaping filter $H_i(f)$ of the input, which cuts off the lower sideband gradually over 2 kHz. Find the output filter $H_o(f)$ required for distortionless reception.

BIEL-014

2

6. For the baseband signal

 $4 \times 2\frac{1}{2} = 10$

 $m(t) = 2 \cos 1000 \pi t + \sin 2000 \pi t$ do the following :

- (a) Sketch the spectrum of m(t).
- (b) Sketch the spectrum of the DSB-SC signal $m(t) \cos 10,000 \pi t$.
- (c) Identify the upper sideband (USB) and lower sideband (LSB) spectra.

 (d) Identify the frequencies in the baseband, and the corresponding frequencies in the DSB-SC, USB and LSB spectra. Explain the nature of frequency shifting in each case.

7. (a) Write the basic definitions of FM. 2 (b) Differentiate between band narrow FM and wide band FM. 4 Describe in detail, phase-locked loop. (c) 4 (a) operation principle 8. Describe of the $2\frac{1}{2}$ FM stereo multiplexing. (b) What the non-linear effects in are $2\frac{1}{2}$ FM systems? P.T.O. **BIEL-014** 3.

(c) An angle modulated signal with carrier frequency $\omega_c = 2\pi \times 10^5$ is described by the equation

 $\phi_{FM}(t) =$

 $10\cos(\omega_{c} t + 5\sin 3000 t + 10\sin 2000 \pi t)$

- (i) Find the power of the modulated signal.
- (ii) Find the frequency deviation ' Δf .
- (iii) Find the deviation ratio ' β '.
- (iv) Find the phase deviation $\Delta \phi$.
- (v) Estimate the bandwidth of $\phi_{FM}(t)$
- **9.** (a) What are the types of noise introduced in communication systems ? Briefly explain each one of them.
 - (b) What is the use of pre-emphasis and de-emphasis circuit system in FM ? Explain with their circuits.

10. Write short notes on any *two* of the following : $2 \times 5 = 10$

- (a) Noise Figure and Noise-bandwidth
- (b) Non-linear model of PLL
- (c) Hilbert transform and its applications

BIEL-014

5

5

5