No. of Printed Pages: 4

BIEL-007

B.Tech. – VIEP – ELECTRONICS AND COMMUNICATION ENGINEERING (BTECVI)

Term-End Examination

00093

June, 2018

BIEL-007: SIGNALS AND SYSTEMS

Time: 3 hours

Maximum Marks: 70

Note: There are seven questions in all. Attempt any **five** questions. All questions carry equal marks. Use of scientific calculator is allowed.

1. (a) Determine whether $x(t) = 2 \sin (\sqrt{5} \pi t)$ is periodic or non periodic. Determine its fundamental time period.

3

(b) Determine the Z-transform with possible Region of Convergence (ROC) of

7

$$x(n) = 2^n u(n + 2) - 3^n u(-n)$$
.

(c) State Parseval's theorem of Fourier transform.

4

- 2. (a) Determine the step response of an LTI system whose impulse response is given by $h(n) = (-1)^n \left[u(n+2) u(n-3) \right].$
 - (b) A stable and causal LTI system is described by the difference equation

$$y(n) + \frac{1}{4} y(n-1) - \frac{1}{8} y(n-2) = -2x(n) + \frac{5}{4} x(n-1)$$

7

7

7

7

Find impulse response of the system.

- 3. (a) Using the convolution property, determine the convolution $x(n)=x_1(n)*x_2(n)$ of the sequence $x_1(n)=\{1,\ 1,\ 1\}$ and $x_2(n)=\{1,\ 0,\ -1\}.$
 - (b) Determine the inverse Fourier transform of $X(j\omega) = \frac{\sin(3\omega)\cos(\omega)}{\omega}$.
- 4. (a) Determine the continuous time Fourier transform of x(t) = (tu(t)) * (u(t) u(t-1)) where u(t) is the unit step function and * represents convolution.
 - (b) If $X(e^{j\omega}) = \frac{j\omega}{(1+j\omega)^2}$ then determine the discrete time Fourier transform of $x_1(n) = x(1-n) + x(-1-n)$.

5. (a) The input and output of a causal LTI system are related by the following differential equation:

$$\frac{\partial^2 y(t)}{\partial t^2} + \frac{6 \partial y(t)}{\partial t} + 8y(t) = 2x(t).$$

What is the response of the system if $x(t) = \frac{\partial}{\partial t} (e^{-2t} u(t))$?

- (b) State and prove the following properties of Fourier transform:
 - (i) Time Shifting
 - (ii) Time Reversal
- 6. (a) For the following ROC, check whether the corresponding LTI system of the system $function \ H(z) = \frac{3-4z^{-1}}{1-3\cdot5z^{-1}+1\cdot5z^{-2}} \ is \ causal$ or non causal. Also determine its impulse response for the following ROCs :
 - (i) |z| > 3
 - (ii) |z| < 0.5
 - (b) State and prove the following properties of Z-transform:
 - (i) Linearity
 - (ii) Scaling

7

10

BIEL-007

- 7. (a) Write down the exponential form of the Fourier series of a periodic signal.
 - (b) Derive the relation between Z-transform and DTFT. 3
 - (c) Determine the inverse Z-transform of $X(z) = \frac{z+2}{2z^2-7z+3} \ \text{if the ROCs are} \qquad \qquad 7$
 - (i) |z| > 3
 - (ii) $|z| < \frac{1}{2}$