B．Tech．－VIEP－ELECTRONICS AND COMMUNICATION ENGINEERING（BTECVI）

Term－End Examination
ロロロ93
June， 2018

BIEL－007 ：SIGNALS AND SYSTEMS

Time ： 3 hours
Maximum Marks ： 70
Note：There are seven questions in all．Attempt any five questions．All questions carry equal marks．Use of scientific calculator is allowed．

1．（a）Determine whether $x(t)=2 \sin (\sqrt{5} \pi t)$ is periodic or non periodic．Determine its fundamental time period．
（b）Determine the Z－transform with possible Region of Convergence（ROC）of 7

$$
x(n)=2^{n} u(n+2)-3^{n} u(-n)
$$

（c）．State Parseval＇s theorem of Fourier $\quad 4$
2. (a) Determine the step response of an LTI system whose impulse response is given by

$$
7
$$

$$
h(n)=(-1)^{n}[u(n+2)-u(n-3)] .
$$

(b) A stable and causal LTI system is described by the difference equation

$$
\begin{aligned}
& y(n)+\frac{1}{4} y(n-1)-\frac{1}{8} y(n-2)=- 2 x(n)+ \\
& \frac{5}{4} x(n-1)
\end{aligned}
$$

Find impulse response of the system.
3. (a) Using the convolution property, determine the convolution $x(n)=x_{1}(n) * x_{2}(n)$ of the sequence $x_{1}(n)=\{1,1,1\}$ and $x_{2}(n)=\{1,0,-1\}$.
(b) Determine the inverse Fourier transform of $X(\mathrm{j} \omega)=\frac{\sin (3 \omega) \cos (\omega)}{\omega}$.
4. (a) Determine the continuous time Fourier transform of $x(t)=(t u(t)) *(u(t)-u(t-1))$ where $u(t)$ is the unit step function and * represents convolution.
(b) If $X\left(e^{j \omega}\right)=\frac{j \omega}{(1+j \omega)^{2}}$ then determine the discrete time Fourier transform of $\mathrm{x}_{1}(\mathrm{n})=\mathrm{x}(1-\mathrm{n})+\mathrm{x}(-1-\mathrm{n})$.
5. (a) The input and output of a causal LTI system are related by the following differential equation :

$$
\frac{\partial^{2} y(t)}{\partial t^{2}}+\frac{6 \partial y(t)}{\partial t}+8 y(t)=2 x(t)
$$

What is the response of the system if $x(t)=\frac{\partial}{\partial t}\left(e^{-2 t} u(t)\right)$?
(b) State and prove the following properties of Fourier transform :
(i) Time Shifting
(ii) Time Reversal
6. (a) For the following ROC, check whether the corresponding LTI system of the system function $H(z)=\frac{3-4 z^{-1}}{1-3 \cdot 5 z^{-1}+1 \cdot 5 z^{-2}}$ is causal or non causal. Also determine its impulse response for the following ROCs :
(i) $|z|>3$
(ii) $|z|<0.5$
(b) State and prove the following properties of Z-transform :
(i) Linearity
(ii) Scaling
7. (a) Write down the exponential form of the Fourier series of a periodic signal. 4
(b) Derive the relation between Z-transform and DTFT.
(c) Determine the inverse Z-transform of $X(z)=\frac{z+2}{2 z^{2}-7 z+3}$ if the ROCs are $\quad 7$
(i) $|z|>3$
(ii) $|z|<\frac{1}{2}$

