B.Tech. - VIEP - COMPUTER SCIENCE AND ENGINEERING (BTCSVI)

Term-End Examination
ロロ953
June, 2018

BICS-018 : THEORY OF COMPUTATION

Time : 3 hours
Maximum Marks : 70
Note: Attempt any seven questions. All questions carry equal marks.

1. (a) Design a DFA over $\{a, b\}$ in which every 'a’ should be followed by bb.
(b) Construct a finite automata equivalent to the regular expression

$$
(0+1)^{*} 00(0+1)^{*}
$$

2. (a) Let $G=\left\{V_{N}, \Sigma, P, S\right)$ be given by the productions

$$
\mathrm{S} \rightarrow \mathrm{AB}|\mathrm{CA}, \mathrm{~B} \rightarrow \mathrm{BC}| \mathrm{AB}, \mathrm{~A} \rightarrow \mathrm{a}, \mathrm{C} \rightarrow \mathrm{aB} \mid \mathrm{b}
$$

Construct a reduced grammar for the given grammar.
(b) State and explain closure properties of regular sets.
3. (a) Define Context Free Grammar. Show that the following CFG is ambiguous :

$$
\begin{aligned}
& \mathrm{E} \rightarrow \mathrm{E}+\mathrm{E} \\
& \mathrm{E} \rightarrow \mathrm{E} * \mathrm{E} \\
& \mathrm{E} \rightarrow \mathrm{id}
\end{aligned}
$$

(b) Prove that $(r+s)^{*}$ is not equal to $r^{*}+s^{*}$ and $r(s+t)$ is equal to ($r s+r t$).
4. (a) Define NDFA with the help of example.
(b) Convert the following NDFA to DFA.

5. Define Deterministic Push Down Automata (DPDA). Design a DPDA for the language

$$
\mathrm{L}=\left\{\mathrm{w} \mathrm{c} \mathrm{w}^{\mathrm{R}} \mid \mathrm{w} \text { belongs to }(\mathrm{a}, \mathrm{~b})^{*}\right\}
$$

6. Differentiate between Turing Machine (TM) and Push Down Automata (PDA). Construct a TM to accepts the set L of all strings over $\{0,1\}$ ending with 010.10

BICS-018 2

$$
\begin{aligned}
& \text { 7. Define Chomsky Normal Form } \\
& \text { (CNF) } \begin{array}{l}
\text { and } \\
\text { Greibach Normal Form (GNF). }
\end{array} \text { Convert the } \\
& \text { following grammar to CNF : } \\
& \qquad \begin{array}{ll}
\mathrm{S} \rightarrow \mathrm{AaB} \mid \mathrm{aaB} \\
\mathrm{~A} \rightarrow \varepsilon \\
\mathrm{~B} \rightarrow \mathrm{bbA} \mid \varepsilon
\end{array}
\end{aligned}
$$

8. Prove that for two recursive languages L_{1} and L_{2},
their union and intersection is recursive. 10
9. Prove the equivalence of PDA and CFL. 10
10. Write short notes on any two of the following : $2 \times 5=10$
(a) Hamiltonian Path
(b) Chromatic Number Problems
(c) Universal Turing Machine
