B．Tech．－VIEP－COMPUTER SCIENCE AND ENGINEERING（BTCSVI）

Term－End Examination
June， 2018

ロロロ13

BICS－010 ：FORMAL LANGUAGES AND AUTOMATA

Time ： 3 hours
Maximum Marks ： 70
Note：Attempt any seven questions．All questions carry equal marks．

1．（a）Define ambiguity in context free grammar． Check whether the grammar G with the production rules
$\mathrm{X} \rightarrow \mathrm{X}+\mathrm{X}|\mathrm{X} * * \mathrm{X}|$ a is ambiguous or not． 5
（b）Construct a phase structure grammar that generates the set $\left\{0^{n} 1^{n} \mid n=0,1,2, \ldots\right\}$ ．

2．（a）What are the properties of a regular set？ Explain any two properties of the regular set with examples．
（b）Define regular set for the following regular expressions ：

$$
\left(0+10^{*}\right),\left(0^{*} 110^{*}\right)
$$

3. (a) Define Finite State Machine (FSM). Design a FSM that adds two integers using their binary expression and explain the solution. 7
(b) Give a formal definition of automata.

3
4. (a) How do you check through a pumping lemma whether a grammar is context free or not? Discuss.
(b) Find the language recognized by the given deterministic finite automata.

5. (a) Define Pushdown Automata. How is it different from deterministic finite automata? 4
(b) Prove that the concatenation of two regular sets is regular.
6. Write an algorithm to find Pushdown Automata (PDA) corresponding to a context free grammar.10
7. (a) Define a Turing Machine. What is the common way to define it? How are Turing Machines used to recognize a regular set?
(b) Describe the meaning of the following regular sets (in words) :
(i) $(1 \cup 00)^{*}$
(ii) $\left(00^{*} 1\right)^{*}$
8. (a) State and explain the Myhill-Nerode theorem with the help of an example.
(b) Let us consider the grammar

$$
\begin{aligned}
G=(\{S, A\},\{a, b\}, S, & \{S \rightarrow a A B \\
& \rightarrow a A \rightarrow a a A b, A \rightarrow \varepsilon\})
\end{aligned}
$$

where,
$\mathrm{S}, \mathrm{A}=$ non terminal symbols
$\mathrm{a}, \mathrm{b}=$ terminal symbols
ε is an empty string
S = Start symbol
Production $\mathrm{P}: \mathrm{S} \rightarrow \mathrm{aAB}, \mathrm{aA} \rightarrow \mathrm{aaAb}, \mathrm{A} \rightarrow \varepsilon$.
Show that the string aaabbb can be derived from the grammar.

