No. of Printed Pages : 3

BICS-010

B.Tech. - VIEP - COMPUTER SCIENCE AND ENGINEERING (BTCSVI)

Term-End Examination

June, 2018

00013

BICS-010 : FORMAL LANGUAGES AND AUTOMATA

Time : 3 hours

Maximum Marks: 70

Note : Attempt any **seven** questions. All questions carry equal marks.

1. (a) Define ambiguity in context free grammar. Check whether the grammar G with the production rules

 $X \rightarrow X + X | X^{**}X |$ a is ambiguous or not. 5

- (b) Construct a phase structure grammar that generates the set $\{0^n \ 1^n \mid n = 0, 1, 2, ...\}$.
- 5

5

5

- 2. (a) What are the properties of a regular set? Explain any two properties of the regular set with examples.
 - (b) Define regular set for the following regular expressions :

1

 $(0 + 10^*), (0^*110^*)$

BICS-010

P.T.O.

3. (a) Define Finite State Machine (FSM). Design a FSM that adds two integers using their binary expression and explain the solution.

7

3

6

4

4

6

- (b) Give a formal definition of automata.
- 4. (a) How do you check through a pumping lemma whether a grammar is context free or not? Discuss.
 - (b) Find the language recognized by the given deterministic finite automata.

- 5. (a) Define Pushdown Automata. How is it different from deterministic finite automata?
 - (b) Prove that the concatenation of two regular sets is regular.
- 6. Write an algorithm to find Pushdown Automata (PDA) corresponding to a context free grammar. 10

BICS-010

- 7. (a) Define a Turing Machine. What is the common way to define it ? How are Turing Machines used to recognize a regular set ?
 - (b) Describe the meaning of the following regular sets (in words):
 - (i) $(1 \cup 00)^*$
 - (ii) (00*1)*
- 8. (a) State and explain the Myhill-Nerode theorem with the help of an example.
 - (b) Let us consider the grammar $G = (\{S, A\}, \{a, b\}, S, \{S \rightarrow aAB,$

 $aA \rightarrow aaAb, A \rightarrow \varepsilon$ })

where,

S, A = non terminal symbols a, b = terminal symbols ε is an empty string S = Start symbol Production P : S \rightarrow aAB, aA \rightarrow aaAb, A $\rightarrow \varepsilon$.

Show that the string aaabbb can be derived from the grammar.

BICS-010

3

1,000

4

5

5

6