B.Tech. - VIEP - COMPUTER SCIENCE AND ENGINEERING (BTCSVI)

Term-End Examination June, 2018

BICS-008: DISCRETE MATHS STRUCTURE

Time: 3 hours		dours Maximum Marks :	Maximum Marks: 70	
No		ttempt any five questions. All questions ca qual marks.	rry	
1.	(a)	Prove that the relation of similarity in the set of all triangles in a plane is an equivalence relation.	7	
	(b)	Prove that $A - (B \cup C) = (A - B) \cap (A - C)$, where A, B and C be any sets.	7	
2.	(a)	What do you understand by fields? Explain with axioms.	7	
	(b)	Define Rings with the axioms.	7	
3.	(a)	State and prove Lagrange's theorem.	10	
	(b)	Prove the following using Venn Diagram : $A \cap B \oplus C = (A \cap B) \oplus (A \cap C)$	4	
BICS-008		1 P.T		

- **4.** Prove the following propositions are tautology: 7+7
 - (a) $p \vee p$
 - (b) $\sim (p \land q) \lor q$
- **5.** (a) Prove that the set {AND, NOT} is a functionally complete set.
 - (b) Using K-Map, simplify the expression A'B' + A'B.

7

- **6.** Convert the Boolean function : 14 f(x, y, z) = (x' + y + z')(x' + y + z)(x + y' + z)in Disjunctive Normal Form (DNF)
- 7. Prove that the relation R on the set $N \times N$ defined by (a, b) R $(c, d) \Leftrightarrow a + d = b + c$ for all $(a, b), (c, d) \in N \times N$ is an equivalence relation.