B.Tech. - VIEP - COMPUTER SCIENCE AND ENGINEERING (BTCSVI)

Term-End Examination

DIG33

June, 2018

BICS-008 : DISCRETE MATHS STRUCTURE

Time: 3 hours
Maximum Marks : 70
Note: Attempt any five questions. All questions carry equal marks.

1. (a) Prove that the relation of similarity in the
set of all triangles in a plane is an
equivalence relation.
(b) Prove that $\mathrm{A}-(\mathrm{B} \cup \mathrm{C})=(\mathrm{A}-\mathrm{B}) \cap(\mathrm{A}-\mathrm{C})$, where A, B and C be any sets. 7
2. (a) What do you understand by fields? Explain with axioms.
(b) Define Rings with the axioms. 7
3. (a) State and prove Lagrange's theorem. 10
(b) Prove the following using Venn Diagram : 4

$$
\mathrm{A} \cap \mathrm{~B} \oplus \mathrm{C}=(\mathrm{A} \cap \mathrm{~B}) \oplus(\mathrm{A} \cap \mathrm{C})
$$

BICS-008 1 P.T.O.
4. Prove the following propositions are tautology : $7+7$
(a) $\mathrm{p} \vee \sim \mathrm{p}$
(b) $\sim(p \wedge q) \vee q$
5. (a) Prove that the set \{AND, NOT\} is a functionally complete set. 7
(b) Using K-Map, simplify the expression $A^{\prime} B^{\prime}+A^{\prime} B$.
6. Convert the Boolean function: 14
$f(x, y, z)=\left(x^{\prime}+y+z^{\prime}\right)\left(x^{\prime}+y+z\right)\left(x+y^{\prime}+z\right)$
in Disjunctive Normal Form (DNF)
7. Prove that the relation R on the set $N \times N$ defined by (a, b) $R(c, d) \Leftrightarrow \mathrm{a}+\mathrm{d}=\mathrm{b}+\mathrm{c}$ for all (a, b), (c, d) $\in \mathrm{N} \times \mathrm{N}$ is an equivalence relation. 14

