B.Tech. Civil (Construction Management) / B.Tech. Civil (Water Resources Engineering)

Term-End Examination

June, 2018

ロ10373

ET-508(B) : STRUCTURAL DESIGN - II

Time: 3 hours
Maximum Marks : 70
Note: Attempt any four questions. All questions carry equal marks. Use of steel tables, IS : 800 and calculator is allowed. Assume any missing data suitably.

1. (a) A bridge truss tie bar flat carries an axial pull of 515 kN . It is to be connected to a gusset plate, 20 mm thick, by a double cover butt joint with 22 mm diameter rivets. If the width of the flat tie bar is 250 mm , determine required thickness of the flat bar. Design an economical joint. Determine the efficiency of the joint. ($\mathrm{f}_{\mathrm{y}}=260 \mathrm{~N} / \mathrm{mm}^{2}$)
(b) Discuss briefly the various design aspects for a crane girder.
2. Design a roof truss tie member made up of a single angle connected to a 10 mm gusset plate and carrying a load of 200 kN . Take separately the following two conditions of joint connections :
(a) Using a single row of power driven rivets
(b) Using 5 mm fillet welds $17 \frac{1}{2}$
3. (a) Design a double angle (placed back-to-back) discontinuous strut to carry a compressive load of 100 kN . The length of strut is 3 m between intersections.
(b). Describe various types of loads considered for design of a railway bridge. $\quad 7 \frac{1}{2}$
4. (a) What do you understand by elastic instability of flanges and webs in beams? Discuss briefly.
(b) What are grillage bases ? Where are they used ? Describe briefly. $7 \frac{1}{2}$
5. A column of section ISHB 300 @ $630 \mathrm{~N} / \mathrm{m}$ carrying an axial load of 600 kN is supported over another column of section ISHB 400 @ $822 \mathrm{~N} / \mathrm{m}$. Design the splicing at the joint. The ends are milled for full bearing. Take f_{y} as $250 \mathrm{~N} / \mathrm{mm}^{2} . \quad 17 \frac{1}{2}$
6. (a) Design a purlin to span 5 m between trusses. The purlins are spaced 1.5 m apart. The roofing and insulation weigh $20 \mathrm{~kg} / \mathrm{m}^{2}$ and snow load is $100 \mathrm{~kg} / \mathrm{m}^{2}$.
Use $P_{b}=1420 \mathrm{~kg} / \mathrm{cm}^{2}$. 10
(b) Write a short note on 'Lug angles'. $7 \frac{1}{2}$
