B.Tech. Civil (Construction Management)/ B.Tech. Civil (Water Resources Engineering)
 Term-End Examination
 GIE $\boldsymbol{G} \quad$ June, 2018

ET-302(A) : COMPUTER PROGRAMMING AND NUMERICAL ANALYSIS

Time: 3 hours
Maximum Marks : 70
Note: Attempt any five questions. All questions carry equal marks. Use of scientific calculator is permitted.

1. (a) Solve the following system of linear equations by Gauss elimination method :

$$
\begin{aligned}
& 10 x+y+z=12 \\
& x+10 y+z=12 \\
& x+y+10 z=12
\end{aligned}
$$

(b) Solve the following system of linear equations by Gauss-Seidel iterative method : 7+7

$$
\begin{aligned}
& 2 x+y+z=4 \\
& x+2 y+z=4 \\
& x+y+2 z=4
\end{aligned}
$$

2. (a) Find the approximate value, correct to three places of decimals of the real root which lies between -2 and -3 of the equation

$$
x^{3}+3 x+4
$$

using the method of false position three times in succession.
(b) Find the real root of the equation

$$
x^{4}-x-9=0
$$

by Newton-Raphson method, correct to three places of decimal.
3. (a) Using Newton's forward interpolation formula, find y at $\mathrm{x}=8$ from the following table :

$\mathrm{x}:$	0	5	10	15	20	25
$\mathrm{y}:$	7	11	14	18	24	32

(b) Using Lagrange's interpolation formula, find the values of y when $x=10$, from the following table :

$\mathrm{x}:$	5	6	9	11
$\mathrm{y}:$	12	13	14	16

4. (a) Evaluate

$$
\int_{0}^{1} \frac{1}{1+x^{2}} d x
$$

using Simpson's rule taking $h=\frac{1}{4}$. Hence compute an approximate value of π.
(b) Find a real root of the equation

$$
x^{3}-x-11=0
$$

correct to 3 decimal places using Bisection method.
5. (a) Solve the following system of linear equations by Jacobi iteration method :

$$
\begin{aligned}
& 8 x-3 y+2 z=20 \\
& 4 x-11 y-z=33 \\
& 6 x+3 y+12 z=35
\end{aligned}
$$

(b) Use Runge-Kutta method to find y when $x=1.2$ in steps of 0.1 , given that

$$
\frac{d y}{d x}=x^{2}+y^{2} \text { and } y(1)=1.5 .
$$

6. (a) Write a FORTRAN program to compute cosine series, i.e.

$$
\cos (x)=1-\frac{x^{2}}{2!}+\frac{x^{4}}{4!}-\frac{x^{6}}{6!}+\ldots+\frac{x^{n}}{n!}
$$

(b) Write a FORTRAN program to find out whether a year (entered in 4-digit number representing it) is a leap year. $\quad 7+7$
7. (a) Given three numbers A, B and C , write FORTRAN programme to write values in descending order.
(b) Two one-dimensional arrays C and D have 25 elements each. Write a FORTRAN program to compute and print the following quantities :

$$
\mathrm{B}=\sum_{\mathrm{i}=1}^{25}\left(\mathrm{C}_{\mathrm{i}}-\mathrm{D}_{\mathrm{i}}\right)^{2} \quad 7+7
$$

8. (a) Write a FORTRAN program to calculate and print the roots of a quadratic equation

$$
\mathrm{Ax}^{2}+\mathrm{Bx}+\mathrm{C}=0 .
$$

(b) Write a FORTRAN program and print the values of $f(x)$ given by

$$
f(x)=\frac{x^{2}+1 \cdot 5 x+5}{x-3}
$$

for $\mathrm{x}=-10$ to 10 .
(x should take values $-10 ;-8 ;-6 ; \ldots 6,8,10$)

