No. of Printed Pages : 3

ET-204(A)

B.Tech. Civil (Construction Management)

Term-End Examination

June, 2018

00083

ET-204(A) : MATERIALS SCIENCE

Time : 3 hours

Maximum Marks: 70

Note : Answer any **seven** questions. Support_your answers with neat sketches. Use of calculator is permitted.

1.	(a)	Can the same material exist in crystall	ine
•		and amorphous form ? Give examples. A	lso
		define metals, ceramics and polymers.	5
	(b)	Discuss the selection parameters for a	iny
		building material.	5
2.	(a) Explain the different types of bonding i		in
		solids.	5
	(b)	(i) In ZrO_2 , what is the CN for zirconi	um
		and oxygen ?	$2rac{1}{2}$
	•	(ii) What are degenerate levels ?	$2rac{1}{2}$
ET	-204(A)	1	P.T.O.

3.	(a)	How do you determine the packing fraction for a BCC structure ? With a neat figure, show the direction in a cubic crystal. 5	
	(b)	Explain the principle of X-ray diffraction. 5	
4.	Expla	Explain	
	(a)	Iron-Carbon phase diagram 5	
	(b)	Micro structured evolution for simple systems 5	
5.	Defin	.e 10×1=10	
	(i)	Creep	
	(ii)	Creep rate	
	(iii)	Shear	
	(iv)	Ductile material	
	(v)	Elastic deformation	
	(vi)	Elasticity	
	(vii)	Slip	
	(viii)	Viscoelasticity	
	(ix)	Plastic deformation	
	(x)	Hooke's Law	
6.	(a)	Explain super conductivity in metals and alloys. 5	
	(b)	A piece of copper 305 mm long is pulled in tension with a stress of 276 MPa. If the	

ET-204(A)

2

resultant elongation ? $E_{copper} = 11 \times 10^4 \text{ MPa}.$

deformation is elastic, what will be the

5

7. Discuss the following with suitable example :

- (a) Kinetic aspects of corrosion
- (b) Principle of electrochemical cell

8. Write short notes on any *two* of the following : $2 \times 5 = 10$

- (a) TTT diagram
- (b) Burgers vector
- (c) Point defects in crystals

5+5