No. of Printed Pages: 7

B.Tech. Civil (Construction Management)/ B.Tech. Civil (Water Resources Engineering)

Term-End Examination

00952

June, 2018

ET-105(B) : CHEMISTRY

Time: 3 hours

Maximum Marks : 70

ET-105(B)

Note : Question no. 1 is **compulsory**. Attempt **seven** questions in all. Use of calculator is allowed.

- 1. Choose the most appropriate option/answer for the following questions : $10 \times 1=10$
 - (a) What is the maximum number of electrons which can possess the following set of quantum numbers :

1

n = 4, l = 3

- (i) 8
- (ii) 10
- (iii) 14
- (iv) 18

ET-105(B)

P.T.O.

(b) What is the formula for the total force on particle j?

(i)
$$j = -\sum_{\substack{i=1\\(i \neq j)}}^{N} \frac{\partial U_{ij}}{\partial \vec{r}_{j}}$$

(ii) $j = -\sum_{\substack{i=1\\(i=j)}}^{N} \frac{\partial U_{ij}}{\partial \vec{r}_{j}}$

(iii)
$$\mathbf{j} = \sum_{\substack{i=1\\(j=0)}}^{N} \frac{\partial \mathbf{U}\mathbf{r}_{ij}}{\partial \vec{\mathbf{r}}_{j}}$$

(iv) None of the above

(c) Nitrogen and hydrogen react to form ammonia in a sealed steel tube. This is a/an

- (i) closed system
- (ii) open system
- (iii) isolated system
- (iv) None of the above
- (d) The first order rate constant for the decomposition of N_2O_5 is $6\cdot 2 \times 10^{-4}$ s⁻¹. What is the half-life for this decomposition ?
 - (i) 1120.7 s
 - (ii) 1117·7 s
 - (iii) 2222·8 s
 - (iv) 1007.7 s

ET-105(B)

- (e) Consider the system consisting of the three solids Fe_3O_4 , FeO and Fe_2O_3 . How many components are there?
 - (i) **3**
 - (ii) 4
 - (iii) **1**
 - (iv) 2
- (f) For the galvanic cell

 $\operatorname{Zn} |\operatorname{Zn}^{2+}(1.0 \text{ M})| | \operatorname{Cr}^{-}(1.0 \text{ M})| \operatorname{AgCl}(s)| \operatorname{Ag}$ the EMF at 298 K is 0.985 V. Identify the *ANODE*.

(i) LHS electrode viz. Zn is the anode

- (ii) RHS electrode viz. Ag is the cathode
- (iii) The Ag electrode is the positive electrode
- (iv) The Zn electrode is the negative electrode
- (g) Predict the geometry of complexes formed by transition metal ions using the hybrid orbitals d^2sp^3 .
 - (i) Tetrahedral
 - (ii) Octahedral
 - (iii) Square planar
 - (iv) Trigonal bipyramidal

ET-105(B)

P.T.O.

- (h) Which has higher electron affinity, ${}_{6}C$ or ${}_{9}F$?
 - (i) ₆C
 - (ii) ₉F
 - (iii) Both ${}_{6}C$ and ${}_{9}F$
 - (iv) None of the above
- (i) Arrange the following hydrocarbons in the order of increasing boiling point :
 - 1. 2, 3-dimethyl butane
 - 2. n-hexane
 - 3. 2, 2-dimethyl butane
 - 4. 2-methyl pentane
 - (i) 1 > 2 > 3 > 4
 - (ii) 4 > 3 > 2 > 1
 - (iii) 3 < 1 < 4 < 2
 - (iv) 1 < 2 < 4 < 3
- (j) The distance of the Sun from the Earth is
 - (i) 120×10^6 km
 - (ii) 180×10^6 km
 - (iii) 150×10^6 km
 - (iv) 100×10^6 km

ET-105(B)

- 2. (a) How would you convert (i) propene to 2-chloropropane, (ii) 1-bromopropene to propene?
 - (b) Which of the following is/are aromatic and why?
 - (i)

(ii) 🛆

(c) Write the reaction for preparing ethylene glycol from ethylene.

3. (a) Explain copolymerisation with the help of an example.

- (b) Explain photosynthesis.
- 4. (a) Write a short note on the Carnot cycle.
 - (b) Three moles of water are heated at atmospheric pressure from 270 K to 400 K. Calculate the entropy change accompanying the process. Ice melts at 273 K and water boils at 373 K. The latent heat of fusion of ice is 333.19 J/g and the latent heat of vapourisation of water is 2255.32 J/g. The specific heat of ice and water are 4.22 J/K⁻¹ g⁻¹ and the specific heat of steam is 2.01 J/K⁻¹ g⁻¹. The molecular weight of water is 18.

ET-105(B)

P.T.O.

5

4

3

3

5

5

5

5

- 5. (a) What are Biological Catalysts ? Derive an expression for rate of reaction catalysed by a biological catalyst in terms of its concentration and concentration of the substrate.
 - (b) For the reaction $A + B \rightarrow$ Products at $A_0 = 1.0$ M, 'B' varied with 't' as follows :

t(min)	$\frac{[B]}{10^{-3}M}$
0	100
1.23	95
2.60	90
5.17	80
8.93	70
17.33	50
19.95	45
57 .50	10

Show that the reaction order is 1 with respect to B and determine k.

- 6. (a) Write orbital energy correlation diagram of 'CO'
 - (i) without hybridization, and
 - (ii) with hybridization on 'C' and 'O'.
 - (b) Calculate the packing fraction in a FCC lattice of NaCl.

ET-105(B)

6

5

5

5

5

- (a) What is the difference between eutectic and triple point ? Explain one of these with a diagram.
 - (b) Define Degrees of Freedom.
 - (c) Define Raoult's law. Relate it with azeotropic mixture.
- 8. (a) Define Nernst Equation.
 - (b) The standard electrode potential of Ag-AgCl electrode on the hydrogen scale is + 0.222 V, at 298 K. For the cell

 $Fe | Fe^{2+}(1.0 M) || Cl^{-}(1.0 M) | AgCl(s) | Ag,$

the EMF was found to be + 0.663 V at 298 K. What is the standard electrode potential of Fe^{2+}/Fe on the hydrogen scale?

- 9. (a) Crystal Field Theory has three assumptions.
 Explain and draw the figure of the splitting of d-level in an octahedral field.
 - (b) Write a short note on blast furnace in the formation of molten iron.
- 10. (a) What are the commercially important compounds of alkali metals ? Discuss any two.
 - (b) Write a short note on chemical properties of boron.

ET-105(B)

1,000

4

2

4

5

5

5

5

5

5