B.Tech. Civil (Construction Management) /

 B.Tech. Civil (Water Resources Engineering) / B.Tech. (Aerospace Engineering)
Term-End Examination

TIEEJ \quad June, 2018

ET-102 : MATHEMATICS - III

Time: 3 hours
Maximum Marks : 70
Note: Question no. 1 is compulsory. Attempt any other eight questions from question nos. 2 to 15 . Use of calculator is allowed.

1. Fill in the blanks. All parts are to be attempted. $7 \times 2=14$
(a) An infinite series $\sum_{n} x_{n}$ is said to be conditionally convergent if \qquad .
(b) A positive term series $\sum \mathbf{x}_{\mathrm{n}}$ be such that $\operatorname{Lim}_{\mathrm{n} \rightarrow \infty}\left(\mathrm{x}_{\mathrm{n}}{ }^{\frac{1}{\mathrm{n}}}=l\right.$, then the series diverges for
(c) A function $\mathrm{f}(\mathrm{x})$ is defined in the interval $0 \leq x<\pi$ and if we take $f(-x)=-f(x)$ in the interval $0 \leq x<\pi$, we obtain function for which Fourier coefficients
\qquad are zero.
(d) The differential equation, with solution $y=x^{2} e^{x}+4 \cos 2 x$, is \qquad .
(e) The Laplace transform of function ($4 \cos ^{2} 2 t$) is \qquad .
(f) Solution of differential equation

$$
(D-1)^{2}(D+1)^{2} y=0, \text { with } D \equiv \frac{d}{d x},
$$

is \qquad .
(g) The residue of the function $f(z)=\frac{z+2}{(z+1)^{2}(z-2)}$ at the pole $z=-1$ is
\qquad .
2. (a) Test the convergence of the series $3 \frac{1}{2}$

$$
\frac{\sqrt{n-1}}{\sqrt{n^{3}+1}} x^{n}, x>0 .
$$

(b) Show that $\sum_{n} \frac{\cos n x}{n^{2}}$ is absolutely convergent and hence convergent.
3. Find the half-range cosine series for the function.

$$
f(x)=(2 x-1), \text { for } 0<x<1
$$

4. Find the Fourier Series generated by the periodic function $|x|$ of period 2π.
5. (a) Determine the analytic function

$$
\begin{equation*}
\mathrm{w}=\mathrm{f}(\mathrm{z})=\mathrm{u}+\mathrm{iv} \text { if } \mathrm{v}=-\frac{\mathrm{y}}{\mathrm{x}^{2}+\mathrm{y}^{2}} \tag{4}
\end{equation*}
$$

(b) For the function $f(z)=\frac{2 z^{3}+1}{z^{2}+z}$, find

Laurent's series expansion with the annulus $0<|z|<1$.
6. Evaluate $\int_{-\infty}^{\infty} \frac{x \cos x-a \sin x}{x^{2}+a^{2}} d x$, using complex variables and residue theorems.
7. (a) Evaluate $\int_{0}^{2 \pi} \frac{(1+2 \cos \theta)^{n} \cos n \theta}{3+2 \cos \theta} d \theta$
(b) Find the critical points and magnificient coefficient of conformal transformation $\mathrm{w}=\mathrm{z}^{2}+2 \mathrm{z}$ at the point $(1-i)$.
8. Use the method of variation of parameters to solve the differential equation

$$
\begin{equation*}
\left(D^{2}+a^{2}\right) y=\sec a x, D \equiv \frac{d}{d x} \tag{7}
\end{equation*}
$$

9. Find the series solution, near $x=0$, of the differential equation.

$$
\begin{equation*}
x(1-x) y^{\prime \prime}+(1-x) y^{\prime}-y=0 \tag{7}
\end{equation*}
$$

10. Solve $\left(D^{2}-3 D D^{\prime}+2 D^{\prime 2}\right) z=$ $e^{2 x-y}+e^{x+y}+\cos (x+2 y)$, with $D \equiv \frac{\partial}{\partial x}$, $\mathrm{D}^{\prime} \equiv \frac{\partial}{\partial \mathbf{y}}$.
11. Using Laplace Transform, solve the differential equation
$y^{\prime \prime}+2 y^{\prime}+5 y=e^{-t} \sin t$, given $y(0)=0, y^{\prime}(0)=1$.
12. Find the deflection of the vibrating string of length π, ends fixed corresponding to zero initial velocity and $3 \sin 4 x$ as initial deflection.
13. Evaluate :

$$
\mathcal{L}^{-1}\left\{\frac{1}{(s+1)\left(s^{2}+1\right)}\right\}
$$

by using convolution theorem.
ET-102
4
14. For a series circuit with given values of inductance L, resistance R and elastance $\frac{1}{C}$ and an impressed voltage $E_{0} \cos \omega t$, for what values of ω will the steady state current be a maximum?
15. Find the characteristic function, transfer function, frequency response function and characteristic roots of the equation

$$
\left(D+4 D^{-1}\right) x=e^{3 t}
$$

