## B.Tech. Civil (Construction Management) / B.Tech. Civil (Water Resources Engineering) / B.Tech. (Aerospace Engineering)

## **Term-End Examination**

00592

June, 2018

## ET-102: MATHEMATICS - III

Time: 3 hours

Maximum Marks: 70

Note: Question no. 1 is compulsory. Attempt any other eight questions from question nos. 2 to 15. Use of calculator is allowed.

- 1. Fill in the blanks. All parts are to be attempted.  $7\times2=14$ 
  - (a) An infinite series  $\sum_{n} x_{n}$  is said to be conditionally convergent if \_\_\_\_\_.
  - (b) A positive term series  $\sum x_n$  be such that  $\lim_{n\to\infty} (x_n)^{\frac{1}{n}} = l$ , then the series diverges for

P.T.O.

- (c) A function f(x) is defined in the interval  $0 \le x < \pi$  and if we take f(-x) = -f(x) in the interval  $0 \le x < \pi$ , we obtain \_\_\_\_\_\_ function for which Fourier coefficients \_\_\_\_\_ are zero.
- (d) The differential equation, with solution  $y = x^2e^x + 4\cos 2x$ , is \_\_\_\_\_.
- (e) The Laplace transform of function  $(4 \cos^2 2t)$  is \_\_\_\_\_.
- (f) Solution of differential equation  $(D-1)^2\,(D+1)^2\,y=0,\,\text{with}\,\,D\equiv\frac{d}{dx}\,,$  is
- (g) The residue of the function  $f(z) = \frac{z+2}{(z+1)^2 (z-2)} \text{ at the pole } z = -1 \text{ is}$
- 2. (a) Test the convergence of the series  $3\frac{1}{2}$   $\frac{\sqrt{n-1}}{\sqrt{n^3+1}} x^n, x > 0.$ 
  - (b) Show that  $\sum_{n} \frac{\cos nx}{n^2}$  is absolutely convergent and hence convergent.  $3\frac{1}{2}$

- 3. Find the half-range cosine series for the function f(x) = (2x 1), for 0 < x < 1
- 4. Find the Fourier Series generated by the periodic function |x| of period 2π.
- 5. (a) Determine the analytic function  $w = f(z) = u + iv \text{ if } v = -\frac{y}{x^2 + y^2}.$ 
  - (b) For the function  $f(z) = \frac{2z^3 + 1}{z^2 + z}$ , find Laurent's series expansion with the annulus 0 < |z| < 1.
- 6. Evaluate  $\int_{-\infty}^{\infty} \frac{x \cos x a \sin x}{x^2 + a^2} dx$ , using complex
  - variables and residue theorems. 7
- 7. (a) Evaluate  $\int_{0}^{2\pi} \frac{(1+2\cos\theta)^{n} \cos n\theta}{3+2\cos\theta} d\theta$ 
  - (b) Find the critical points and magnificient coefficient of conformal transformation  $w = z^2 + 2z$  at the point (1-i).

8. Use the method of variation of parameters to solve the differential equation

$$(D^2 + a^2) y = \sec ax, D \equiv \frac{d}{dx}$$

9. Find the series solution, near x = 0, of the differential equation.

$$x(1-x)y'' + (1-x)y' - y = 0$$

10. Solve 
$$(D^2 - 3DD' + 2D'^2)$$
  $z = e^{2x - y} + e^{x + y} + \cos(x + 2y)$ , with  $D = \frac{\partial}{\partial x}$ , 
$$D' = \frac{\partial}{\partial y}.$$

11. Using Laplace Transform, solve the differential equation

$$y'' + 2y' + 5y = e^{-t} \sin t$$
, given  $y(0) = 0$ ,  $y'(0) = 1$ .

7

7

- 12. Find the deflection of the vibrating string of length  $\pi$ , ends fixed corresponding to zero initial velocity and 3 sin 4x as initial deflection.
- 13. Evaluate:

$$\mathcal{L}^{-1}\left\{\frac{1}{(s+1)(s^2+1)}\right\}$$

by using convolution theorem.

ET-102

4

- 14. For a series circuit with given values of inductance L, resistance R and elastance  $\frac{1}{C}$  and an impressed voltage  $E_0$  cos  $\omega t$ , for what values of  $\omega$  will the steady state current be a maximum?
- 7
- 15. Find the characteristic function, transfer function, frequency response function and characteristic roots of the equation

$$(D + 4D^{-1}) x = e^{3t}$$

7