B.Tech. Civil (Construction Management) /
 B.Tech. Civil (Water Resources Engineering) /
 B.Tech. (Aerospace Engineering) /
 BTCLEVI / BTMEVI / BTELVI / BTECVI / BTCSVI

 Term-End Examination

 Term-End Examination
 $\square \square 23$
 June, 2018

ET-101(A) : MATHEMATICS - I

Time: 3 hours
Maximum Marks : 70
Note : All questions are compulsory. Use of calculator is allowed.

1. Answer any five of the following:
$5 \times 4=20$
(a) Find

$$
\lim _{x \rightarrow 0} \frac{x^{2}}{\sec x-1}
$$

(b) Find the value of ' \mathfrak{b} ' for which the function

$$
f(x)= \begin{cases}x^{3}+1, & \text { when } x<2 \\ b x+\frac{2}{x}, & \text { when } x \geq 2\end{cases}
$$

is continuous at $\mathbf{x}=2$.
ET-101(A)
1
P.T.O.
(c) Find the derivative of

$$
\sin \left(\log \frac{2 x}{x^{2}-3}\right)
$$

(d) Find the equations of the tangent and normial to the parabola $\mathrm{y}^{2}=4 \mathrm{ax}$ at the point ($\mathrm{x}_{1}, \mathrm{y}_{1}$).
(e) Find the shortest distance from the origin to the surface $\mathrm{xyz}^{2}=2$.
(f) If

$$
x=r \cos \theta, y=r \sin \theta, \text { and } z=z
$$

find

$$
\frac{\partial(\mathbf{x}, \mathbf{y}, \mathbf{z})}{\partial(\mathbf{r}, \theta, \mathrm{z})}
$$

2. Answer any four of the following :
(a) Evaluate

$$
\int e^{2 x} \cdot \sin 5 x d x
$$

(b) Evaluate

$$
\int_{0}^{\pi / 2} \sin ^{4} x \cos ^{5} x d x
$$

(c) Find the area bounded by the parabola $y=x^{2}$ and the line $y=x$.
(d) From Simpson's rule with $h=0 \cdot 1$, prove that $\int_{0}^{1} \frac{d x}{1+x^{2}}=\frac{\pi}{4}$
(e) Solve the equation

$$
(1-\sin x \tan y) d x+\left(\cos x \sec ^{2} y\right) d y=0
$$

(f) Solve the differential equation

$$
2 \frac{d y}{d x}-\frac{y}{x}=5 x^{3} y^{3} .
$$

3. Answer any four of the following :
(a) Find the value of constant λ so that the vectors

$$
\begin{aligned}
& \vec{a}=2 \hat{i}-\hat{j}+\hat{k} \\
& \vec{b}=\hat{i}+2 \hat{j}-3 \hat{k} \\
& \vec{c}=3 \hat{i}+\lambda \hat{j}+5 \hat{k} \text { are coplanar. }
\end{aligned}
$$

(b) Find the directional derivative of
$x^{2}+y^{2}+4 x y$ at $(1,-2,2)$ in the direction of $2 \hat{i}-2 \hat{j}+\hat{k}$.
(c) If $\vec{r}=x \hat{i}+y \hat{j}+z \hat{k}$, show that
(i) $\operatorname{div} \vec{r}=3$,
(ii) $\operatorname{div}\left(\vec{r} / r^{3}\right)=0$
(d) Show that the vector field defined by
$\overrightarrow{\mathbf{F}}=2 \mathrm{xyz}^{3} \hat{\mathrm{i}}+\mathrm{x}^{2} \mathbf{z}^{3} \hat{j}+3 \mathrm{x}^{2} \mathrm{yz}^{2} \hat{\mathbf{k}}$ is irrotational.
(e) Use Green's theorem to evaluate

$$
\oint_{C}\left[\left(x^{2}+x y\right) d x+\left(x^{2}+y^{2}\right) d y\right]
$$

where C is the boundary of the square $\mathrm{y}= \pm 1, \mathrm{x}= \pm 1$.
(f) Use divergence theorem to evaluate the surface integral $\iint_{S} \overrightarrow{\mathbf{F}} \cdot d \overrightarrow{\mathrm{~S}}$, where
$\vec{F}=x \hat{i}+y \hat{j}+z \hat{k}$ and S is $x^{2}+y^{2}+z^{2}=a^{2}$ in first octant.
4. Answer any six of the following :
(a) Let

$$
A=\left[\begin{array}{ll}
2 & 0 \\
0 & 1
\end{array}\right] \text { and } B=\left[\begin{array}{ll}
2 & 1 \\
1 & 1
\end{array}\right]
$$

Then show that both A and B are symmetric, but AB is not symmetric.
(b) Find the rank of A, where

$$
A=\left[\begin{array}{lll}
1 & 1 & 1 \\
2 & 2 & 2 \\
3 & 3 & 3
\end{array}\right]
$$

(c) Find the inverse of matrix A by Gauss-Jordan method, where

$$
A=\left[\begin{array}{lll}
1 & 2 & 3 \\
2 & 4 & 5 \\
3 & 5 & 6
\end{array}\right]
$$

(d) Solve the system of linear equations by matrix method

$$
2 x+y-z=0,2 x+5 y+7 z=52, x+y+z=9
$$

(e) Find the eigenvalues of the matrix

$$
A=\left[\begin{array}{ccc}
1 & 2 & 2 \\
0 & 2 & 1 \\
-1 & 2 & 2
\end{array}\right]
$$

(f) Verify Cayley-Hamilton theorem for the matrix

$$
A=\left[\begin{array}{cc}
1 & 2 \\
2 & -1
\end{array}\right]
$$

and hence compute A^{-1}.
(g) If

$$
A=\left[\begin{array}{cc}
0 & 1+2 i \\
-1+2 i & 0
\end{array}\right]
$$

show that $(I-A)(I+A)^{-1}$ is a unitary matrix.
(h) Verify that the following matrix is orthogonal :

$$
A=\frac{1}{3}\left[\begin{array}{ccc}
1 & 2 & 2 \\
2 & 1 & -2 \\
2 & -2 & 1
\end{array}\right]
$$

