B.Tech. CIVIL ENGINEERING (BTCLEVI)

Term-End Examination
June, 2018

모13

BICE-022 : COMPUTER APPLICATIONS IN CIVIL ENGINEERING

Time: 3 hours
Maximum Marks : 70
Note: All answers are to be written in English only. Attempt all questions. Scientific calculator is allowed. All questions carry equal marks.

1. (a) Perform five iterations of bisection method to obtain the smallest positive root of equation $f(x) \equiv x^{3}-5 x+1=0 . \quad 3 \frac{1}{2}$
(b) Solve $\cos x=3 x-1$ correct to three decimal places using the method of false position. $3 \frac{1}{2}$
2. (a) Find a positive value of $(17)^{1 / 3}$ correct to six decimal places by Newton-Raphson method. $3 \frac{1}{2}$
(b) What are the various sources of errors in numerical methods ? Explain the terms significant digits and round-off errors.
$3 \frac{1}{2}$
3. Use Gauss Elimination to solve the following system of equations :

$$
\begin{aligned}
& 2 x+y-z=4 \\
& x-y+2 z=-2 \\
& -x+2 y-z=2
\end{aligned}
$$

4. Solve the following system of equations by the LU factorization method :

$$
\begin{aligned}
& 2 x+3 y+z=9 \\
& x+2 y+3 z=6 \\
& 3 x+y+2 z=8
\end{aligned}
$$

5. Evaluate from following table $f(3 \cdot 8)$ to three significant figures using Gregory-Newton Backward Interpolation formula :

$x:$	0	1	2	3	4
$f(x):$	1	1.5	2.2	3.1	4.6

6. Compute the value of $f(x)$ for $x=2.5$ from the following table :

$x:$	1	2	3	4
$f(x):$	1	8	27	64

using Lagrange's interpolation method.
7. Find

$$
\int_{0}^{6} \frac{e^{x}}{1+x} d x
$$

approximately using Simpson's $3 / 8^{\text {th }}$ rule on integration.
8. Given the initial value problem

$$
y^{\prime}=1+y^{2}, y(0)=0 .
$$

Find $\mathbf{y}(0.6)$ by Runge-Kutta fourth order method taking $h=0 \cdot 2$.
9. (a) Explain the features of Unimodal functions with suitable examples.

$$
3 \frac{1}{2}
$$

(b) Discuss the salient features of Fibonacci method.
$3 \frac{1}{2}$
10. (a) Use Euler's method to obtain an approximate value of $y(0.4)$ for the equation

$$
\frac{d y}{d x}=x+y, y(0)=1, \text { with } h=0 \cdot 1 . \quad 3 \frac{1}{2}
$$

(b) Explain the following terms : $3 \frac{1}{2}$
(i) Floating point numbers
(ii) Fixed point numbers

