No. of Printed Pages: 3

BASE-005

B.Tech. AEROSPACE ENGINEERING (BTAE)

Term-End Examination

00463

June, 2018

BASE-005: INTRODUCTION TO COMPUTATIONAL FLUID DYNAMICS

Time: 3 hours Maximum Marks: 70

Note: Answer any **seven** questions. All questions carry equal marks. Use of scientific calculator is permitted.

- 1. (a) What are the sources of errors in CFD analysis? How can it be minimized?

 5
 - (b) Differentiate between conservative and non-conservative forms of fluid flow. 5
- 2. (a) Explain the principle of panel methods used in CFD. 5
 - (b) List out the advantages and limitations of panel methods.

- 3. (a) Explain the algebraic grid generation technique with suitable example.
 - (b) Describe the shock capturing method. 5
- **4.** Describe Von Neumann stability analysis with suitable examples. 10
- **5.** (a) Explain the physical behaviour of Hyperbolic PDE in CFD, with suitable examples.
 - (b) List out the differences between finite volume and finite difference method. 5
- **6.** (a) What are the theoretical aspects of transonic flow?
 - (b). Show that the Laplace's equation is as given below:

$$\frac{\partial^2 \phi}{\partial x^2} + c^2 \frac{\partial^2 \phi}{\partial y^2} = 0$$

7. Define Isentropic flow. What do you mean by quasi-one dimensional flow? Derive the expression for governing equations of quasi-one dimensional steady, isentropic flow by considering equation of state.

5

5

5

5

8.	(a)	Using Taylor's series, derive the backward
		difference expression for $\frac{\partial \mathbf{u}}{\partial \mathbf{y}}$.

5

- (b) Discuss about the Dirichlet and Neumann boundary conditions with suitable examples. 5
- 9. Explain the shock fitting and shock capturing techniques using neat appropriate sketches. 10
- 10. Write short notes on any **two** of the following: $2\times5=10$
 - (a) Consistency
 - (b) Convergence
 - (c) Finite Volume Method
 - (d) Weighted Residual Formulation