No. of Printed Pages : 2

BASE-003

B.Tech. AEROSPACE ENGINEERING (BTAE) Term-End Examination June, 2018

00193

BASE-003 : HIGH SPEED AERODYNAMICS

Time : 3 hours

Maximum Marks: 70

Note: Answer any seven questions. All questions carry equal marks. Use of scientific calculator is permitted. All symbols and notations have their usual meaning.

1.	Derive	\mathbf{the}	Prandtl -	- Glauert	relationship	for		
	two-dimensional subsonic flow.							

2.	Discuss	\mathbf{the}	linearized	ar	nd e	exact			
	two-dimer	nsional	supersonic	flow	theory	in			
	detail.						10		
3.	Explain the significance of pitching moment and centre of pressure in supersonic profiles.								
4.	Explain in detail 'Transonic Area Rule'.								
5.	Discuss in detail the flow past unswept airfoils.								
BAS	SE-003		1			P.T	⁻ .O.		

- Explain small perturbation potential theory for supersonic flow.
 10
- 7. (a) What is the relationship between internal energy and enthalpy?
 - (b) Define strong shock wave and weak shock wave in a compressible flow.
 - (c) Differentiate between a Shock wave and a Mach wave. 4+3+3=10
- 8. Make a comparative study of 2D and 3D shock waves / boundary layer interaction. 10
- **9.** Define the following $5 \times 2 = 10$
 - (a) Pitching moment
 - (b) Adiabatic flow
 - (c) Forward swept wing
 - (d) Fanno flow
 - (e) Turbulent flow

BASE-003