B.Tech. (AEROSPACE ENGINEERING)

 (BTAE)Term-End Examination
ロロ1 3 3 June, 2018

BAS-008 : STRENGTH OF MATERIALS

Time: 3 hours
Maximum Marks : 70
Note: Answer any five questions. All questions carry equal marks. Use of scientific calculator is permitted. Assume missing data suitably.

1. A quadrant ring beam of radius ' r ' supports a
concentrated load ' P ' at the free end. Calculate
vertical and horizontal deflection at the free end.
Also explain the concept of limit load for load
factor determination.
2. (a) Define 7
(i) Young's modulus,
(ii) Shear modulus, and
(iii) Poisson's ratio.

Write the relationship amongst them.
(b) Derive an expression for elongation of a flat tapering bar subjected to an axial pull 'P'. 7
BAS-008
1
P.T.O.
3. A metallic bar $300 \mathrm{~mm}(\mathrm{x}) \times 100 \mathrm{~mm}(\mathrm{y}) \times 40 \mathrm{~mm}(\mathrm{z})$ is subjected to a force of 5 kN (tensile), 6 kN (tensile) and 4 kN (tensile) along x, y and z directions respectively. Determine the change in volume of the block. Take $E=2 \times 10^{5} \mathrm{~N} / \mathrm{mm}^{2}$ and Poisson's ratio $=0 \cdot 25$.
4. A mild steel rod of 25 mm diameter and 400 mm length is encased centrally inside a hollow copper tube of external diameter 35 mm and internal diameter 30 mm . The ends of the rod and tube are rigidly attached and the composite bar is subjected to an axial pull of 40 kN . Take Young's modulus of steel and copper as $200 \mathrm{GN} / \mathrm{m}^{2}$ and $100 \mathrm{GN} / \mathrm{m}^{2}$ respectively. Find the stress developed in the rod and the tube.
5. (a) What is meant by torsional stiffness ? 4
(b) A close-coiled helical spring is to have a stiffness of $900 \mathrm{~N} / \mathrm{m}$ in compression with a maximum load of 45 N and a maximum shearing stress of $120 \mathrm{~N} / \mathrm{mm}^{2}$. The solid length of the spring (i.e. coils touching) is 45 mm . Find
(i) the wire diameter
(ii) the mean coil radius
(iii) the number of coils.

Take modulus of rigidity of the material of the spring as $0.4 \times 10^{5} \mathrm{~N} / \mathrm{mm}^{2}$. $3+3+4$
6. (a) Derive the expression for the theory of pure torsion, with usual notations.
(b) Determine the slope and deflection for a cantilever beam subjected to clockwise moment at its free end. 7
7. Write short notes on any two of the following : 7+7
(a) Limitations of Euler's formula
(b) Flexibility and Stiffness
(c) Unsymmetrical Bending

