B．Tech．AEROSPACE ENGINEERING （BTAE）

Term－End Examination
 June， 2018

पロロッ

BAS－001 ：APPLIED PHYSICS

Time ： 3 hours
Maximum Marks ： 70
Note：Answer any seven questions．All questions carry equal marks．Use of scientific calculator is permitted．All symbols and notations carry usual meaning．

1．Derive the displacement and velocity of a particle executing a simple harmonic motion，as a function of time．

2．The co－efficient of static friction between a block of mass＇ m ＇and an incline is $\mu_{\mathrm{s}}=0.3$ ．
（a）What can be the maximum angle θ of the inclined plane with the horizontal so that the block does not slip on the plane？
（b）If the inclined plane makes an angle $0 / 2$ with the horizontal，find the frictional force on the block．
3. Two travelling waves of equal amplitudes and equal frequencies move in opposite directions along a string. They interfere to produce a standing wave having the equation

$$
y=A \cos k x \sin \omega t
$$

in which $A=1.0 \mathrm{~mm}, \mathrm{k}=1.57 \mathrm{~cm}^{-1}$ and $\omega=78 \cdot 5 \mathrm{~s}^{-1}$.
(a) Find the velocity of the compound travelling waves.
(b) Find the node closest to the origin in the region $\mathrm{x}>0$.
(c) Find the antinode closest to the origin in the region $\mathrm{x}>0$.
(d) Find the amplitude of the particle at $x=2.33 \mathrm{~cm}$.
4. (a) Explain the Fraunhofer type of diffraction produced by a narrow single slit of width ' a ' and illuminated by a monochromatic light of wavelength ' λ '. Also deduce the positions of maxima and minima.
(b) What is a progressive wave ? Find the equation of a plane progressive wave. Also deduce the relation between phase difference and path difference.
5. (a) State Bohr's fundamental postulates to explain the spectra of hydrogen atom. Deduce an expression for the energy of hydrogen atom in $\mathrm{n}^{\text {th }}$ state.
(b) Explain (i) Cut-off potential, (ii) Cut-off frequency, and (iii) Cut-off wavelength with respect to photoelectric effect.
6. (a) Derive the relation between stopping
potential and threshold frequency in
photoelectric effect.
(b) A mass M is attached to a spring which oscillates with a period of 4 seconds. If the mass is increased by 2 kg , the period increases by 2 seconds. Find the initial mass M , assuming that Hooke's law is obeyed.

7. Discuss the phenomenon of interference of thin
films, in detail. 10
8. Explain the construction and working of a
Helium - Neon Laser. 10
9. Describe the Michelson-Morley experiment for detecting relative motion of matter. 10
