MCA (Revised)
 Term-End Examination

07155

June, 2018

MCSE-004 : NUMERICAL AND STATISTICAL COMPUTING

Time : 3 hours
Maximum Marks : 100
Note: Question no. 1 is compulsory. Attempt any three questions from the rest. Use of calculator is allowed.

1. (a) Define relative and percentage error. Find the relative and percentage error when the value of $\pi=\frac{22}{7}$ is approximated to $3 \cdot 14$.
(b) Find the value of ' e ', correct to 3 decimal places.

$$
e=1+\frac{1}{2!}+\frac{1}{3!}+\frac{1}{4!}+\ldots
$$

(c) Use the Newton-Raphson method to find the root of the equation $x^{3}-2 x-5=0$. Perform two iterations. Use initial approximation $x_{0}=2$.
(d) Solve the following system of linear equations using the Gauss Elimination method :

$$
\begin{aligned}
& x_{1}+x_{2}+x_{3}=3 \\
& 4 x_{1}+3 x_{2}+4 x_{3}=8 \\
& 9 x_{1}+3 x_{2}+4 x_{3}=7
\end{aligned}
$$

(e) Obtain the forward difference interpolating polynomial from the following set of nodes: 6

x	$f(x)$
0	0
1	7
2	26
3	63
4	124
5	215
6	342
7	511

(f) Evaluate the integral $\int_{0}^{1} \frac{d x}{1+x}$ using Simpson's $\frac{3}{8}$ th rule with $\mathrm{h}=\frac{1}{3}$.
(g) A farmer buys a quantity of cabbage seeds from a company that claims that approximately 90% of the seeds will germinate if planted properly. If four seeds are planted, what is the probability that exactly two will germinate?
(h) The tangent of the angle between the lines of regression of y on x and x on y is 0.6 and $\sigma_{\mathrm{x}}=\frac{1}{2} \sigma_{\mathrm{y}}$. Find σ_{xy}.
2. (a) Solve the following system of equations by using LU Decomposition method :

$$
\begin{aligned}
& x+y=2 \\
& 2 x+3 y=5
\end{aligned}
$$

(b) Find the Lagrange interpolating polynomial that fits the following data :

x	0	1	2	5
$\mathrm{f}(\mathrm{x})$	2	3	12	147

(c) Calculate the value of the integral $5 \cdot 2$ $\log \mathrm{x} d x$ using Weddle's rule.
3. (a) Show that the moment generating function of a random variable X which is chi-square distributed with v degrees of freedom is

$$
\begin{array}{cr}
M(t)=(1-2 t)^{-v / 2} . & 5 \tag{5}\\
3 & \text { P.T.O. }
\end{array}
$$

(b) In a partially destroyed laboratory record of an analysis of correlation data, the following results are legible :
Variance of $\mathrm{X}=9$
Regression equations

$$
\begin{aligned}
& 8 x-10 y+66=0 \\
& 40 x-18 y-214=0
\end{aligned}
$$

Find
(i) the mean values of x and y,
(ii) the correlation coefficient between \mathbf{x} and y, and
(iii) the standard deviation of y.
(c) What is the utility of residual plots? Also give one disadvantage of residual plots.
4. (a) Apply the fourth order Runge-Kutta method to the following differential equation :

$$
\begin{aligned}
& \frac{d y}{d x}=-2 x y^{2} \\
& y(0)=1
\end{aligned}
$$

Obtain $\mathrm{y}(0 \cdot 2)$, taking $\mathrm{h}=0.2$.
(b) Find the probability that an individual's IQ score is between 91 and 121. Provided : the individual IQ score has normal distribution with mean 100 and variance 225.
(c) Write short notes on any two of the following :
(i) Goodness of Fit
(ii) Newton-Cotes Formula
(iii) Non-linear Regression
5. (a) Solve by Jacobi's method, the following system of linear equations :

$$
\begin{aligned}
& 2 x_{1}-x_{2}+x_{3}=-1 \\
& x_{1}+2 x_{2}-x_{3}=6 \\
& x_{1}-x_{2}+2 x_{3}=-3
\end{aligned}
$$

(b) Suppose that the amount of time one spends in a bank to withdraw cash from an evening counter is exponentially distributed with mean 10 minutes, that is, $\lambda=\frac{1}{10}$. What is the probability that the customer will spend more than 15 minutes at the counter?
(c) What do you mean by pseudo-random number generation? What is the practical advantage of the concept of random number generation?

