MCA (Revised)
Term-End Examination
$\square 1 \square 35$
June, 2018

MCS-033 : ADVANCED DISCRETE MATHEMATICS

Time: 2 hours
Maximum Marks : 50

Note: Question no. 1 is compulsory. Attempt any three questions from the rest.

1. (a) Write the recurrence relation of Tower of Hanoi problem and explain the formulation.
(b) A person invested ₹ $10,000 @ 12 \%$ interest compounded annually. How much will he get at the end of 15 years? (Solve using recurrence relation only)
(c) Explain generating function. What type of problems can be solved using generating function for recurrence relation?
(d) Is there a simple graph corresponding to the following degree sequence :

4
(i) $(1,1,2,3)$
(ii) $(2,2,4,6)$
(e) For what value of n is the graph of K_{n} Eulerian?
2. (a) Find whether the following pair of graphs are isomorphic or not.

(G)

(G^{\prime})
(b) The following graph contains no Euler circuit. Give reasons.

3. (a) If G is a connected simple graph with ($\mathrm{h} \geq 3$) vertices and e edges then 5

$$
e \leq 3 n-6
$$

(b) Consider the graph G. Use suitable graph colouring algorithm to colour G and find $\chi(G)$.

4. (a) Solve
$a_{n+2}-5 a_{n+1}+6 a_{n}=2$
with initial condition $a_{0}=1, a_{1}=-1$.
(b) Determine the generating function of the following sequence :

$$
a_{r}=\left\{\begin{array}{clll}
2^{r} & \text { if } r & \text { is even } \\
-2^{r} & \text { if } r & \text { is odd }
\end{array}\right\}
$$

5. (a) Determine the number of integer solutions to linear equation
$\mathrm{x}_{1}+\mathrm{x}_{2}=3$ with $0 \leq \mathrm{x}_{1} \leq 1$ and $0 \leq \mathrm{x}_{2} \leq 2$.
(b) Show that $a_{n}=-2^{n+1}$ is the solution of the non-homogeneous linear recurrence relation

$$
a_{n}=3 a_{n-1}+2^{n}
$$

