MCA (Revised)

Term-End Examination

प0035

June, 2018

MCS-031(S) : DESIGN AND ANALYSIS OF ALGORITHMS

Time : 3 hours
Maximum Marks : 100
Note: Question no. 1 is compulsory. Attempt any three from the remaining questions.

1. (a) Define an Algorithm. Explain five characteristics to define an algorithm.

6
(b) Sort the following sequence of input using merge sort :

$$
\{10,2,1,5,3,8,11,24,7\}
$$

(c) What is Greedy Algorithm ? Explain with an example.
(d) Define minimum cost spanning tree. Write Prim's Algorithm to generate a minimum cost spanning tree for the following graph :

(e) Define Turing Machine (TM). Construct a TM for the Language ODD PALINDROME over input alphabet $\Sigma=\{\mathrm{a}, \mathrm{b}\}$.
(f) Explain "Principle of Optimality" w.r.t. dynamic programming. Solve the following chain-matrix multiplication problem using dynamic programming:

$$
\begin{aligned}
& \left(M_{1}, M_{2}, M_{3}, M_{4}\right) \text { with dimensions } \\
& (5 \times 10,10 \times 50,50 \times 9,9 \times 13)
\end{aligned}
$$

2. (a) Find the Regular Expression for the following Finite-Automata :

(b) Write Quicksort Algorithm. Sort the following sequence of array elements using Quicksort :
$7,9,5,10,20,13,15,12$
(c) Given two matrix A and B, each of dimensions ($\mathrm{n} \times \mathrm{n}$). Discuss V. Strassen's matrix multiplication method of multiplying A and B . Also show that this multiplication takes $\mathrm{O}\left(\mathrm{n}^{\log _{2} 7}\right)$ to multiply A and B .
3. (a) Solve the following recurrence relation of Fibonacci series :

$$
f_{n}=\left\{\begin{array}{cc}
0 & \text { if } n=0 \\
1 & \text { if } n=1 \\
f_{n-1}+f_{n-2} & \text { if } n \geq 2
\end{array}\right.
$$

(b) Write Dijkstra's Algorithm to find single source shortest path problem. Apply Dijkstra's Algorithm on the following graph :

(c) Suppose L_{1} and L_{2} are context-free languages. Show that their Union $\left(L_{1} \cup L_{2}\right)$ and Concatenation $\left(L_{1}, L_{2}\right)$ is also a context-free language.
4. (a) For the function $f(x)=7 x^{4}-5 x^{2}+11$, show that
(i) $f(x)=O\left(x^{5}\right)$
(ii) $x^{5} \neq \mathrm{O}(\mathrm{f}(\mathrm{x}))$
(iii) $\mathrm{f}(\mathrm{x})=\Theta\left(\mathrm{x}^{4}\right)$
(b) Sort the following elements using merge sort:
$\{28,13,15,17,9,56,4,46,39,64\}$
(c) Discuss the best case and average case time complexity of quick sort algorithm by writing their recurrence relation.
5. (a) Differentiate between P, NP, NP-Complete and NP-Hard problems.
(b) Explain undecidable problems of context-free language.
(c) Differentiate between the following: 8
(i) Deterministic Finite Automata (DFA) and Non-deterministic Finite Automata (NFA)
(ii) Deterministic PDA and
Non-deterministic PDA.

