No. of Printed Pages : 3
MCS-013

MCA (Revised) / BCA (Revised)

Term-End Examination

12165

June, 2018

MCS-013 : DISCRETE MATHEMATICS

Time : 2 hours
Maximum Marks : 50
Note: Question number 1 is compulsory. Attempt any three questions from the rest.

1. (a) How many three digit numbers are there with no digit repeated?
(b) Show that 2

$$
\sim(p \vee q)=\sim p \wedge \sim q
$$

(c) Prove that

$$
a b+\left[c\left(a^{\prime}+b^{\prime}\right)\right]=a b+c
$$

(d) Find the domain for which the function $f(x)=3 x^{2}-1$ and $g(x)=1-5 x$ are equal. Also find a domain for which the functions are not equal.
(e) Prove that

$$
(A-B) \cup B=A \cup B
$$

(f) If there are 12 persons in a party, and if each two of them shake hands with each other, how many handshakes happen in the party?
(g) Show that for integers greater than zero:

$$
2^{n}>=n+1
$$

2. (a) Use mathematical induction method to prove that
$1^{2}+2^{2}+3^{2}+\ldots+n^{2}=\frac{n(n+1)(2 n+1)}{6}$
(b) Draw Venn diagrams to represent the following for sets A, B and C .
(i) $\mathrm{A} \Delta \mathrm{B}$
(ii) $\mathrm{A} \cap \mathrm{B} \cup \mathrm{C}$
(c) Find n if $2 P(n, 2)+50=P(2 n, 2)$.
3. (a) If $f: R \rightarrow R$ is a function such that $f(x)=3 x+5$, prove that f is one-one onto.
(b) Show that $p \vee(q \wedge r) \Leftrightarrow(p \vee q) \wedge(p \vee r)$ is a tautology.
(c) Find in how many ways can 25 identical books be placed in 5 identical boxes.
4. (a) Find the Boolean Expression for the given circuit.

Figure 1
(b) Show whether $\sqrt{17}$ is rational or irrational.

$$
\begin{aligned}
& \text { (c) Prove that } \\
& \qquad p \Leftrightarrow q \equiv(p \Rightarrow q) \wedge(q \Rightarrow p) .
\end{aligned}
$$

5. (a) Let $A=\{a, b, c, d\}, B=\{1,2,3\}$ and $R=\{(a, 2),(b, 1),(c, 2),(d, 1)\}$. Is $R a$ function? Why?
(b) How many permutations are there of the letters, taken all at a time, of the word DISTINCT?
(c) Show that in any group of 30 people, we can always find 5 people who were born on the same day of the week.
(d) Find how many 4 digit numbers are odd. 2
