MCA (Revised) / BCA (Revised) Term-End Examination June, 2018

MCS-012 : COMPUTER ORGANISATION AND ASSEMBLY LANGUAGE PROGRAMMING

Time: 3 hours Maximum Marks: 100

(Weightage 75%)

Note: Question number 1 is compulsory and carries 40 marks. Attempt any three questions from the rest.

- 1. (a) Convert the following pairs of decimal numbers to 8 bit signed 2's complement binary numbers and add them. State whether or not overflow occurs in each case.
- O

- (i) 34 and 63
- (ii) -63 and -24
- (iii) -86 and 19
- (iv) -34 and -96
- (b) Simplify the following Boolean expression in SOP form using the K-map: 5 $F(A, B, C, D) = \sum_{i=0}^{\infty} (0, 1, 2, 8, 9, 10, 14, 15).$

(c)	Two 16 bit registers R0 and R1 contain binary values - 97 and + 76 respectively.	
	Carry flag C = 1. What is the result of the	
	following micro-operations:	6
	(i) Add R0 and R1 with Carry	
	(ii) R0 AND with complement R1	
	(iii) Shift right R1 without carry	
	(iv) Selective set R1 using R0	
(d)	Explain the IEEE-32 bit format for single precision floating point representation.	
	Represent	
•	$(i) 8.75 \times 10^6$	
	(ii) -0.25×10^{-5}	
	using this format.	6
(e)	How many chips of 512 K \times 8 are required for constructing 4 M \times 32 memory ?	3
(f)	Write a program using 8086 assembly language program to find the larger of two byte values stored in memory location. Store the larger value in BL register.	6
(g)	Discuss the data storage scheme used for hard disks.	4
(h)	Discuss the indexed addressing scheme with the help of an example.	4

2. (a		
	even parity bit scheme.	4
(l	Explain the Hamming error correcting code	
	for 4 bit data using an example.	6
(0	e) Explain the use of segment registers in	
	8086 microprocessors. Calculate the	
•	physical address given:	6
	(i) $IP = 2345h$	
	(ii) CS = 1111h	
(d	l) Explain the concept of memory	
	interleaving.	4
3. (a	Explain the construction of J-K flip-flop	
	with characteristic table and excitation	
	table.	6
(b	Explain the construction of a full adder using	
	half adders.	6
(c) Assume a computer has 32 word RAM	
	having word size of 8 bits and cache	
	memory of 4 blocks (block size = 16 bits).	
•	Where will be the main memory (RAM)	
	address 12 located in cache if:	3
•	(i) Associative cache mapping scheme is followed?	
	(ii) Direct cache mapping scheme is followed?	
MCS-0	12 3 P.T.O	

4.	(a)	Explain how a pipelined processor results in better performance.
	(b)	Explain the interrupt processing in 8086 with the help of a diagram.
	(c)	Discuss any five features of RISC machines.
	(d)	Differentiate between hardwired and microprogrammed control units.
5.	(a)	Write a 8086 assembly language program to interchange two byte sized numbers stored in consecutive memory locations.
	(b)	Explain the following with the help of an example, if needed: (i) Interrupt cycle (ii) Program controlled I/O (iii) Flash memory (iv) 8086 flags (v) NEAR procedure in 8086 microprocessor