BACHELOR OF COMPUTER APPLICATIONS （BCA）（Pre－Revised）

Term－End Examination

ロロロ95
June， 2018

CS－73 ：THEORY OF COMPUTER SCIENCE

Time： 3 hours
Maximum Marks ： 75

Note：Question number 1 is compulsory．Attempt any three questions from the rest．

1．（a）Determine a deterministic Finite State Automaton from the given non－deterministic Finite State Automaton

$$
M=\left(\left\{q_{0}, q_{1}\right\},\{a, b\}, \delta, q_{0},\left\{q_{1}\right\}\right)
$$

with the state table diagram for δ given below ：

δ	a	b
q_{0}	$\left\{\mathrm{q}_{0}, \mathrm{q}_{1}\right\}$	$\left\{\mathrm{q}_{1}\right\}$
q_{1}	ϕ	$\left\{\mathrm{q}_{0}, \mathrm{q}_{1}\right\}$

（b）Obtain the regular expression for the languages given by
（i）$\quad L_{1}=\left\{a^{2 n} b^{2 m+1} \mid n \geq 0, m \geq 0\right\}$
（ii） $\mathrm{L}_{2}=\{\mathrm{a}, \mathrm{bb}, \mathrm{aa}, \mathrm{abb}, \mathrm{ba}, \mathrm{bbb}, \ldots\}$
(c) Given a CFG $G=(\mathrm{N}, \mathrm{T}, \mathrm{P}, \mathrm{S})$ with

$$
\begin{aligned}
& N=\{s\}, T=\{a, b\} \text { and } \\
& P=\left\{\begin{array}{cc}
(1) & S \rightarrow a S b \\
(2) & S \rightarrow a b
\end{array}\right\} .
\end{aligned}
$$

Obtain the derivation tree and the language generated $\mathrm{L}(\mathrm{G})$.
(d) Show that there exists no algorithm for deciding whether any one CFG is ambiguous.
(e) Prove that the function $f(x, y)=\max (x, y)$ is primitive recursive.
2. (a) Define a regular set. Using Pumping Lemma, show that the language $\mathrm{L}=\left\{\mathrm{a}^{\mathrm{n}} \mathrm{b}^{\mathrm{k}}: \mathrm{n}>\mathrm{k}\right.$ and $\left.\mathrm{n} \geq 0\right\}$ is not regular.
(b) Tabulate the Chomsky hierarchy with an example for each type of grammar.

7
3. (a) Reduce the given CFG with Productions given by

$$
\begin{aligned}
& \mathrm{S} \rightarrow \mathrm{abSb}|\mathrm{a}| \mathrm{aAb} \text { and } \\
& \mathrm{A} \rightarrow \mathrm{bS} \mid \mathrm{aAAb}
\end{aligned}
$$

to Chomsky Normal form.
(b) Prove that if L is a CFL, then L^{*} is also a CFL.
4. (a) Construct a Turing Machine that recognizes the language $\mathrm{L}=\left\{0^{\mathrm{n}, \mathrm{m}}: \mathrm{n}, \mathrm{m} \geq 0\right\}$. 10
(b) Write a short note on Universal Turing Machine. 5
5. (a) With a suitable example, explain various asymptotic notations in detail. 10
(b) Discuss the applications of finite automata. 5

