BACHELOR OF COMPUTER APPLICATIONS (BCA) (Pre-Revised) 01955 **Term-End Examination**

June. 2018

CS-71 : COMPUTER ORIENTED NUMERICAL TECHNIQUES

Time : 3 hours

Maximum Marks : 75

Note: Question number 1 is compulsory. Attempt any three questions from questions number 2 to 5. Use of scientific calculator is permitted.

- If 0.182 is the approximate value of $\frac{2}{11}$, 1. (a) find the absolute, relative and percentage errors.
 - (b) Using bisection method, find a real root of the equation

$$x^3 - 5x + 1 = 0.$$
 5

(c) Find the root of the equation

$$xe^x = \cos x$$

using the Regula-Falsi method, correct to three decimal places.

CS-71

1

P.T.O.

5

CS-71

(d) Solve the following equations by Cramer's rule :

$$5x - 2y + 3z = 18$$

 $x + 7y - 3z = -22$
 $2x - y + 6z = 22$

(e) Prove the following :
(i)
$$E^{1/2} + E^{-1/2} = 2\mu$$

(ii) $\delta = E^{1/2} - E^{-1/2}$

(f) If
$$f(x) = x^4$$
, find the value of $f(a, b, c)$.

$$x^3 - 2x - 1 = 0.$$
 5

(b) Apply the Newton-Raphson method to find an approximate root, correct to three decimal places, of the equation

$$x^4 - x - 10 = 0.$$

(c) Using Lagrange's interpolation, find the value of x, when y = 15, from the given data :

x	5	6	9	11
у	12	13	14	16

3. (a) Solve the following equations by Gauss' elimination method :

$$4x_1 + x_2 + x_3 = 4$$

$$x_1 + 4x_2 - 2x_3 = 4$$

$$3x_1 + 2x_2 - 4x_3 = 6$$

CS-71

5

5

5

5

5

- (b) Given $\frac{dy}{dx} = \frac{y x}{y + x}$ with initial condition y = 1 at x = 0; find y for x = 0.10 using Euler's method.
- (c) From the following data, find f(0.7)approximately by using Newton's backward formula :

x	0.10	0.20	0.30	0.40	0.50	0.60
f(x)	2.68	3.04	3.38	3.68	3∙96	4.21

4. (a) Use Jacobi's iteration method to solve the following system of equations :

20x + y - 2z = 173x + 20y - z = -182x - 3y + 20z = 25

- (b) Using Runge-Kutta method, solve $\frac{dy}{dx} = xy$ for x = 1.2. Initial values are : x = 1, y = 2. Take h = 0.2.
- (c) Construct Newton's forward interpolation polynomial for the following data :

x	4	6	8	10
У	1	3	8	16

Hence evaluate y for x = 5.

CS-71

3

P.T.O.

5

5

5

5

Solve the following equations by using 5. (a) Gauss-Seidel method :

> $10x_1 + x_2 + x_3 = 12$ $2x_1 + 10x_2 + x_3 = 13$ $2x_1 + 2x_2 + 10x_3 = 14$

Given that : (b)

x	ln x
4.0	1.3863
$4\cdot 2$	1.4351
4.4	1.4816
4.6	1.5261
4.8	1.5686
$5 \cdot 0$	1.6094
5.2	1.6487

Evaluate
$$\int_{4}^{5 \cdot 2} ln x dx$$
 by using

- (i) Trapezoidal rule, and
- Simpson's $\frac{1}{3}$ rd rule. (ii) 5
- Taylor series for y(x)(c) Obtain where $y' + y^2 = x$ given, y(0) = 1. Use it to compute y(0.1), correct to four decimal places. 5