BACHELOR OF COMPUTER APPLICATIONS (BCA) (Pre-Revised)
0195

Term-End Examination
June, 2018

CS-71 : COMPUTER ORIENTED NUMERICAL TECHNIQUES

Time : 3 hours
Maximum Marks : 75
Note: Question number 1 is compulsory. Attempt any three questions from questions number 2 to 5 . Use of scientific calculator is permitted.

1. (a) If $0 \cdot 182$ is the approximate value of $\frac{2}{11}$, find the absolute, relative and percentage errors.
(b) Using bisection method, find a real root of the equation

$$
\begin{align*}
& \qquad x^{3}-5 x+1=0 \tag{5}\\
& \text { (c) Find the root of the equation }
\end{align*}
$$

$$
x e^{x}=\cos x
$$

using the Regula-Falsi method, correct to three decimal places.
(d) Solve the following equations by Cramer's rule :

$$
\begin{aligned}
& 5 x-2 y+3 z=18 \\
& x+7 y-3 z=-22 \\
& 2 x-y+6 z=22
\end{aligned}
$$

(e) Prove the following:
(i) $\mathrm{E}^{1 / 2}+\mathrm{E}^{-1 / 2}=2 \mu$
(ii)

$$
\delta=\mathrm{E}^{1 / 2}-\mathrm{E}^{-1 / 2}
$$

(f) If $f(x)=x^{4}$, find the value of $f(a, b, c)$.
2. (a) By the secant method, find the root that lies between 1 and 2, correct to three decimal places, of the equation

$$
x^{3}-2 x-1=0
$$

(b) Apply the Newton-Raphson method to find an approximate root, correct to three decimal places, of the equation

$$
\begin{equation*}
x^{4}-x-10=0 \tag{5}
\end{equation*}
$$

(c) Using Lagrange's interpolation, find the value of x , when $\mathrm{y}=15$, from the given data:

x	5	6	9	11
y	12	13	14	16

3. (a) Solve the following equations by Gauss' elimination method :

$$
\begin{aligned}
& 4 x_{1}+x_{2}+x_{3}=4 \\
& x_{1}+4 x_{2}-2 x_{3}=4 \\
& 3 x_{1}+2 x_{2}-4 x_{3}=6
\end{aligned}
$$

(b) Given $\frac{d y}{d x}=\frac{y-x}{y+x}$ with initial condition $\mathrm{y}=1$ at $\mathrm{x}=0$; find y for $\mathrm{x}=0 \cdot 10$ using Euler's method.
(c) From the following data, find $\mathrm{f}(0 \cdot 7)$ approximately by using Newton's backward formula :

x	0.10	0.20	0.30	0.40	0.50	0.60
$\mathrm{f}(\mathrm{x})$	2.68	3.04	3.38	3.68	3.96	4.21

4. (a) Use Jacobi's iteration method to solve the following system of equations :

$$
\begin{aligned}
& 20 x+y-2 z=17 \\
& 3 x+20 y-z=-18 \\
& 2 x-3 y+20 z=25
\end{aligned}
$$

(b) Using Runge-Kutta method, solve $\frac{d y}{d x}=x y$ for $\mathrm{x}=1 \cdot 2$. Initial values are $: \mathrm{x}=1, \mathrm{y}=2$.

Take $\mathrm{h}=0 \cdot 2$.
(c) Construct Newton's forward interpolation polynomial for the following data :

x	4	6	8	10
y	1	3	8	16

Hence evaluate y for $\mathrm{x}=5$.
5. (a) Solve the following equations by using Gauss-Seidel method :

$$
\begin{aligned}
& 10 x_{1}+x_{2}+x_{3}=12 \\
& 2 x_{1}+10 x_{2}+x_{3}=13 \\
& 2 x_{1}+2 x_{2}+10 x_{3}=14
\end{aligned}
$$

(b) Given that:

x	$\ln \mathrm{x}$
$4 \cdot 0$	$1 \cdot 3863$
$4 \cdot 2$	$1 \cdot 4351$
$4 \cdot 4$	$1 \cdot 4816$
$4 \cdot 6$	$1 \cdot 5261$
$4 \cdot 8$	$1 \cdot 5686$
$5 \cdot 0$	$1 \cdot 6094$
$5 \cdot 2$	1.6487

Evaluate $\int_{4}^{5 \cdot 2} \ln \mathrm{x} \mathrm{dx}$ by using
(i) Trapezoidal rule, and
(ii) Simpson's $\frac{1}{3}{ }^{\text {rd }}$ rule.
(c) Obtain Taylor series for $y(x)$ where $\mathrm{y}^{\prime}+\mathrm{y}^{2}=\mathrm{x}$ given, $\mathrm{y}(0)=1$. Use it to compute $y(0 \cdot 1)$, correct to four decimal places.

