BACHELOR OF COMPUTER APPLICATIONS (BCA) (Pre-Revised)

Term-End Examination
$\square 14 \square 5$ June, 2018

CS-60 : FOUNDATION COURSE IN MATHEMATICS IN COMPUTING

Time: 3 hours

Maximum Marks : 75
Note: Question no. 1 is compulsory. Answer any three questions from questions no. 2 to 6 . Use of cálculator is permitted.

1. (a) For $z=\frac{24+7 i}{5+12 i}$, find $|z|$ and $\arg (z)$.
(b) Evaluate :

$$
\int \tan x d x
$$

(c) For real x , prove that $\mathrm{x}+\frac{1}{\mathrm{x}} \geq 2$. When does the equality sign hold?
(d) Solve graphically :

$$
\begin{aligned}
& 3 x+2 y=7 \\
& x+y=3
\end{aligned}
$$

(e) Find $\frac{d y}{d x}$, when $y=\frac{1}{\sqrt{x}}$.
(f) Find the equation of the straight line passing through the origin and perpendicular to $3 x+2 y+4=0$.
(g) Find the equation of the circle with centre at (1,2) and which passes through the origin.
(h) Convert the equation $r=4 \sin \theta$ to the two-dimensional Cartesian form.
(i) Determine the eccentricity of the hyperbola $4 x^{2}-3 y^{2}=12$.
(j) Find the angle between the pair of straight lines given by $\dot{x}^{2}-y^{2}=0$.
(k) Evaluate:

$$
\int_{0}^{\pi} \cos 3 x d x
$$

(1) Evaluate :

$$
\operatorname{Lim}_{x \rightarrow \pi} \frac{\sin x}{\pi-x}
$$

(m) Prove that $f(x)=\tan 2 x$ is a periodic function.
(n) Prove with symbols having usual meaning that, $\mathrm{A} \cup \phi=\mathrm{A}$, where A is a non-empty set.
(o) Write down the equation of the plane which is parallel to the $x y$-plane and 3 units above it.
2. (a) Solve using Cramer's rule 4

$$
x+y=5, \quad 3 x-4 y=1
$$

(b) Solve the quadratic equation

$$
\begin{equation*}
x^{2}+5 x+6=0 \tag{3}
\end{equation*}
$$

(c) Prove that

$$
\begin{equation*}
(1+i)^{2}=2 i \tag{3}
\end{equation*}
$$

3. (a) Given that $x+y=5$, find the maximum value of $x y$.
(b) Find the equation of the straight line passing through the origin and the mid-point of the line joining $(1,2)$ and $(3,4)$.
(c) Show that the straight line $x+y=2 \sqrt{2}$ is a tangent to the circle $\mathrm{x}^{2}+\mathrm{y}^{2}=4$.
4. (a) Find the condition for which $y=m x+c$ is a tangent to the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$.
(b) Find the equation of the normal to the parabola

$$
\mathrm{y}^{2}=4 \mathrm{ax} \text { at }\left(\mathrm{at}^{2}, 2 \mathrm{at}\right)
$$

Hence prove that, in general, three normals can be drawn to a parabola from an external point.
5. (a) Prove that $\tan x$ is a continuous function except for x being odd multiples of $\frac{\pi}{2}$.
(b) Find $\frac{d y}{d x}$, if $y=\tan ^{-1}\left(\frac{a+b x}{b-a x}\right)$.
(c) Evaluate :

3

$$
\int_{0}^{\sqrt{3}} x^{3} d x
$$

6. (a) Show that the triangle formed by the points ($\mathrm{a}, \mathrm{b}, \mathrm{c}$); ($\mathrm{b}, \mathrm{c}, \mathrm{a}$); $(\mathrm{c}, \mathrm{a}, \mathrm{b})$ is equilateral.
(b) If α, β and γ be the direction angles of a line, show that

$$
\begin{equation*}
\sin ^{2} \alpha+\sin ^{2} \beta+\sin ^{2} \gamma=2 . \tag{3}
\end{equation*}
$$

(c) Find the equation of the sphere having its centre at $(2,-3,4)$ and radius equal to 5 .

3

