No. of Printed Pages: 7

BCS-054

BACHELOR OF COMPUTER APPLICATIONS (BCA) (Revised)

01075 Term-End Examination

June, 2018

BCS-054 : COMPUTER ORIENTED NUMERICAL TECHNIQUES

Time : 3 hours

Maximum Marks : 100

Note :

- (i) Any calculator is allowed during examination.
- (ii) Question no. 1 is compulsory. Attempt any three more from the next four questions.
- (a) Explain with suitable example, the advantages of using Normalized form of representing numbers.
 - (b) For two floating point numbers $x_1 = 0.7268 \times 10^5$ and $x_2 = 0.6271 \times 10^4$, find $x_1 - x_2$ in floating point representation.

BCS-054

P.T.O.

3

- (c) Find the product of two numbers given in question number 1(b) above, in floating point notation.
- (d) Write the following system of linear equations in matrix form

-8x + 15y = -1

7x - 4y = 10

(e) Find an interval in which the following equation has a root

 $x^2 - 12x + 30 = 0.$

- (f) Write briefly the steps of bisection method to find roots of an equation.
- (g) Write E and μ in terms of ∇ .
- (h) Write the expressions, one for each, which is obtained by applying each of the following operators to f(x) for some h > 0;
 - (i) D
 - (ii) E
 - (iii) ∇

BCS-054

2

3

3

3

2

3

- (i) State formulae for each of the following interpolations :
 - (i) Newton's Forward Difference Formula

(ii) Stirling's Formula

(j) Construct a difference table for the following data:

x	1	2	3	4
f(x)	8	12	17	25

(k) State Trapezoidal rule for finding the value of integral $\int_{a}^{b} f(x) dx$.

(1) Explain each of the following concepts with a suitable example :

- (i) Boundary value problem
- (ii) Order of a differential equation
- (iii) Degree of a differential equation

BCS-054

P.T.O.

4

3

4

2. (a) Using 8-decimal digit floating point representation (4 digits for mantissa, 2 for exponent and one each for signs of mantissa and exponent), represent the following numbers in normalized floating point form :

3

3

14

- (i) 0.000725
- (ii) 89.6532
- (iii) 98876
- (b) Briefly discuss how ZERO is represented as a floating point number for 8-decimal digit representation mentioned above in Q. No. 2(a).
- (c) Let $a = 476.9 \times 10^6$, $b = 657.2 \times 10^4$ and $c = -5.342 \times 10^4$. Find out, whether '+' is associative for a, b and c (i.e., you have to find whether a + (b + c) = (a + b) + c or not), using 8-decimal digit representation mentioned in Q. No. 2(a).

BCS-054

(a) Solve the following system of linear equations, using Partial Pivoting : 11

$$2x - 3y + 5z = 4$$
$$x + 5y - 4z = 2$$
$$4x + 3y - 7z = 0$$

- (b) Explain the relative advantages of direct methods over iterative methods for solving a system of linear equations.
- (c) Solve the following system of linear equations by Gaussian Elimination Method : 5 8x - 5y = 11

3x + 7y = 13

 (a) The population of a city in a census taken once in 10 years is given below in thousands. Estimate the value in 1975.

5

Year	1970	198 0	1990	2000	2010
Population	45	52	68	94	130

BCS-054

4.

P.T.O.

- 8

- (b) Derive operators δ and Δ in terms of E.
- (c) Find Newton's Backward difference form of interpolating polynomial for the data :

x	f(x)	
6	21	
8	42	
10	85	
12	157	

5. Attempt any *two* parts of (a), (b) and (c) below :

(a) Find approximate value of I = $\int_{2}^{4} \frac{dx}{4+3^{x}}$

using Simpson's (1/3) rule taking h = 0.5. 10

(b) The values of $y = \sqrt{x}$ are given below for x = 1.5 (0.5) 3.5.

x	1.5	2.0	2.5	3.0	3.2
f(x)	1.2247	1.4142	1.5811	1.7320	1.8708

Compute the value of f'(x) at x = 1.0.

10

BCS-054

6

5

(c) Solve the following IVP using Euler's method:

y' = 1 - 2xy, y(0.2) = 0.1948

Find y(0.4) with h = 0.1.

BCS-054

Contra 🕴

7

5,000

10

3.):