BACHELOR OF COMPUTER APPLICATIONS (BCA) (Revised)

IIDETETerm-End Examination

June, 2018

BCS-054 : COMPUTER ORIENTED NUMERICAL TECHNIQUES

Time: 3 hours
Maximum Marks : 100

Note :
(i) Any calculator is allowed during examination.
(ii) Question no. 1 is compulsory. Attempt any three more from the next four questions.

1. (a) Explain with suitable example, the advantages of using Normalized form of representing numbers.
(b) For two floating point numbers $x_{1}=0.7268 \times 10^{5}$ and $x_{2}=0.6271 \times 10^{4}$, find $x_{1}-x_{2}$ in floating point representation.
(c) Find the product of two numbers given in question number 1(b) above, in floating point notation.
(d) Write the following system of linear equations in matrix form

$$
\begin{array}{r}
-8 x+15 y=-1 \\
7 x-4 y=10
\end{array}
$$

(e) Find an interval in which the following equation has a root

$$
\begin{equation*}
x^{2}-12 x+30=0 \tag{2}
\end{equation*}
$$

(f) Write briefly the steps of bisection method to find roots of an equation.
(g) Write E and μ in terms of ∇. 3
(h) Write the expressions, one for each, which is obtained by applying each of the following operators to $f(x)$ for some $h>0$:
(i) D
(ii) E
(iii) ∇
(i) State formulae for each of the following interpolations :
(i) Newton's Forward Difference Formula
(ii) Stirling's Formula
(j) Construct a difference table for the following data :

x	1	2	3	4
$f(x)$	8	12	17	25

(k) State Trapezoidal rule for finding the value of integral $\int^{b} f(x) d x$.
(1) Explain each of the following concepts with a suitable example :
(i) Boundary value problem
(ii) Order of a differential equation
(iii) Degree of a differential equation
2. (a) Using 8-decimal digit floating point representation (4 digits for mantissa, 2 for exponent and one each for signs of mantissa and exponent), represent the following numbers in normalized floating point form :
(i) 0.000725
(ii) $-89 \cdot 6532$
(iii) -98876
(b) Briefly discuss how ZERO is represented as a floating point number for 8-decimal digit representation mentioned above in Q. No. 2(a).
(c). Let $\mathrm{a}=476.9 \times 10^{6}, \mathrm{~b}=657.2 \times 10^{4}$ and $c=-5.342 \times 10^{4}$. Find out, whether ' + ' is associative for a, b and c (i.e., you have to find whether $a+(b+c)=(a+b)+c$ or not $)$, using 8 -decimal digit representation mentioned in Q. No. 2(a).
3. (a) Solve the following system of linear equations, using Partial Pivoting: 11

$$
\begin{aligned}
& 2 x-3 y+5 z=4 \\
& x+5 y-4 z=2 \\
& 4 x+3 y-7 z=0
\end{aligned}
$$

(b) Explain the relative advantages of direct methods over iterative methods for solving a system of linear equations. 4
(c) Solve the following system of linear equations by Gaussian Elimination Method: 5

$$
\begin{aligned}
& 8 x-5 y=11 \\
& 3 x+7 y=13
\end{aligned}
$$

4. (a) The population of a city in a census taken once in 10 years is given below in thousands. Estimate the value in 1975.

Year	1970	1980	1990	2000	2010
Population	45	52	68	94	130

(b) Derive operators δ and Δ in terms of E.
(c) Find Newton's Backward difference form of interpolating polynomial for the data :

x	$f(x)$
6	21
8	42
10	85
12	157

5. Attempt any two parts of (a), (b) and (c) below :
(a) Find approximate value of $I=\int_{2}^{4} \frac{d x}{4+3^{x}}$

> using Simpson's $(1 / 3)$ rule taking $h=0 \cdot 5$.
(b) The values of $y=\sqrt{x}$ are given below for $\mathrm{x}=1.5(0.5) 3.5$.

x	1.5	2.0	2.5	3.0	3.5
$f(x)$	1.2247	1.4142	1.5811	1.7320	1.8708

Compute the value of $f^{\prime}(x)$ at $x=1 \cdot 0$.
(c) Solve the following IVP using Euler's method :

$$
y^{\prime}=1-2 x y ; y(0 \cdot 2)=0 \cdot 1948
$$

Find $\mathrm{y}(0 \cdot 4)$ with $\mathrm{h}=0 \cdot 1$. 10

