BACHELOR OF COMPUTER APPLICATIONS (BCA) (Revised)

02735

Term-End Examination
June, 2018

BCS-012 : BASIC MATHEMATICS

Time : 3 hours
Maximum Marks : 100
Note: Question number 1 is compulsory. Attempt any three questions from the rest.

1. (a) Show that

$$
\left|\begin{array}{ccc}
1 & a & a^{2} \tag{5}\\
a^{2} & 1 & a \\
a & a^{2} & 1
\end{array}\right|=\left(a^{3}-1\right)^{2}
$$

(b) Find the inverse of $A=\left[\begin{array}{ccc}1 & 2 & 5 \\ 2 & 3 & 1 \\ -1 & 1 & 1\end{array}\right]$.
(c) Find the sum up to n terms of the series

$$
\begin{equation*}
3+33+333+\ldots \tag{5}
\end{equation*}
$$

(d) If $1, \omega, \omega^{2}$ are the cube roots of unity, show that $\left(1+\omega+\omega^{2}\right)^{5}+\left(1-\omega+\omega^{2}\right)^{5}+$

$$
\left(1+\omega-\omega^{2}\right)^{5}=32 \quad 5
$$

(e) If $\mathrm{y}=1+\ln \left(\mathrm{x}+\sqrt{\mathrm{x}^{2}+1}\right)$, prove that

$$
\left(x^{2}+1\right) \frac{d^{2} y}{d x^{2}}+x \frac{d y}{d x}=0
$$

(f) A stone is thrown into a lake producing a circular ripple. The radius of the ripple is increasing at the rate of $5 \mathrm{~m} / \mathrm{s}$. How fast is the area inside the ripple increasing when the radius is 10 m ?
(g) Find the value of λ for which the vectors $\vec{a}=\hat{i}-4 \hat{j}+\hat{k}, \vec{b}=\lambda \hat{i}-2 \hat{j}+\hat{k}$ and $\vec{c}=2 \hat{i}+3 \hat{j}+3 \hat{k}$ are coplanar.
(h) Find the angle between the lines

$$
\begin{align*}
\vec{r} & =2 \hat{i}+3 \hat{j}-4 \hat{k}+t(\hat{i}-2 \hat{j}+2 \hat{k}) \\
\vec{r} & =3 \hat{i}-5 \hat{k}+s(3 \hat{i}-2 \hat{j}+6 \hat{k}) . \tag{5}
\end{align*}
$$

2. (a) Solve the following system of equations by the matrix method:

$$
\begin{align*}
& 2 x-y+3 z=5,3 x+2 y-z=7, \\
& 4 x+5 y-5 z=9 . \tag{5}
\end{align*}
$$

(b) Show that $A=\left[\begin{array}{ccc}3 & 4 & -5 \\ 3 & 3 & 0 \\ 1 & 1 & 5\end{array}\right]$ is row equivalent to I_{3}.
(c) Use the principle of mathematical induction to show that

$$
1+4+7+\ldots+(3 n-2)=\frac{1}{2} n(3 n-1) . \quad 5
$$

(d). Find the quadratic equations with real coefficients and with the following pair of roots : $\frac{m-n}{m+n},-\frac{m+n}{m-n}$
3. (a) Evaluate :

$$
\lim _{x \rightarrow 0} \frac{\sqrt{1+2 x}-\sqrt{1-2 x}}{x}
$$

(b) If $(x+i y)^{1 / 3}=a+i b$, prove that

$$
\frac{x}{a}+\frac{y}{b}=4\left(a^{2}-b^{2}\right)
$$

(c) Solve the equation

$$
2 x^{3}-15 x^{4}+37 x-30=0
$$

if the roots of the equation are in A.P.
(d) Draw the graph of the solution set of the following inequalities :

$$
2 x+y \geq 8, x+2 y \geq 8 \text { and } x+y \leq 6 .
$$

4. (a) Determine the values of x for which the following function is increasing and for which it is decreasing :

$$
\begin{equation*}
f(x)=(x-1)(x-2)^{2} \tag{5}
\end{equation*}
$$

(b) Find the absolute maximum and minimum of the following function:

$$
\begin{equation*}
f(x)=\frac{x^{3}}{x+2} \text { on }[-1,1] . \tag{5}
\end{equation*}
$$

(c) Find the length of the curve $\mathrm{y}=2 \mathrm{x}^{3 / 2}$ from the point $(1,2)$ to $(4,16)$.
(d) Evaluate the integral

$$
\begin{equation*}
\int \frac{(x+1)^{2}}{(x-1)^{2}} d x \tag{5}
\end{equation*}
$$

5. (a) If $\vec{a}=\hat{i}-2 \hat{j}+\hat{k}, \vec{b}=2 \hat{i}+\hat{j}+\hat{k}$ and $\overrightarrow{\mathbf{c}}=\hat{\mathbf{i}}+2 \hat{\mathrm{j}}-\hat{\mathbf{k}}$, verify that

$$
\vec{a} \times(\vec{b} \times \vec{c})=(\vec{a} \cdot \vec{c}) \vec{b}-(\vec{a} \cdot \vec{b}) \cdot \vec{c}
$$

(b) Find the vector and Cartesian equations of the line passing through the points $(-2,0,3)$ and (3, 5, -2).
(c) Reduce the matrix

$$
A=\left[\begin{array}{lll}
0 & 1 & 2 \\
1 & 2 & 3 \\
3 & 1 & 1
\end{array}\right]
$$

to its normal form and hence determine its rank.
(d) Find the direction cosines of the line passing through the two points ($1,2,3$) and ($-1,1,0$).

