B.Tech. - VIEP - ELECTRICAL ENGINEERING (BTELVI)

Term-End Examination June, 2017

BIEE-009: APPLIED ELECTROMAGNETICS

Time: 3 hours Maximum Marks			: 70	
No	Note: Attempt any five questions. All questions carry equal marks. Use of scientific calculator is permitted. Assume data, if any missing.			
1.	(a)	Define standing-wave ratio. How is it related to voltage and current reflection		
2.0	(b)	coefficients? State and explain Faraday's law of electromagnetic induction.	7	
2.	(a) (b)	State and prove Poynting's theorem. Explain the terms instantaneous, average and complex Poynting vectors.	7	
3.	(a)	Write and explain differential and integral forms of Maxwell's equations.	7	
DIE	(b)	Explain the significance of displacement current.	7	

4.	(a)	State and explain Biot-Savart's law for static magnetic fields as applied to different types of current distribution. 7
	(b)	Using Biot-Savart's law, derive an expression for inductance per unit length of a long coaxial cable with radii of inner and
		outer conductors as 'a' and 'b' (b > a) respectively.
5.	(a)	Show that the magnetostatic field can be described in terms of vector potential which satisfies the vector Poisson's equation.
	(b)	Derive the expression curl H = J, where the symbols have their usual meanings.
6.	(a)	Explain the phenomenon of polarization when a dielectric slab is subjected to an electric field; with the help of neat sketches. How does this phenomenon reduce the electric field inside the
	(b)	dielectric? 10 Give the limitations of Gauss's law. 4
7.	(a)	Derive Poisson's and Laplace's equations in electrostatics.
	(b)	Considering a parallel plate capacitor, explain the concept of energy density. 7