B.Tech. - VIEP - ELECTRICAL ENGINEERING (BTELVI)

Term-End Examination

$\square \square \square \square \Perp 4 \quad$ June, 2017

BIEE-005 : ELECTROMAGNETIC THEORY

Time : 3 hours
Maximum Marks : 70

Note: Attempt any five questions. All questions carry equal marks. Use of scientific calculator is allowed.

1. (a) Prove that the electric field intensity is equal to the negative gradient of the potential.
(b) Find the electric field intensity at a point ' P ' located at $(0,0, \mathrm{~h}) \mathrm{m}$ due to the charge of surface charge density ' σ ' $\mathrm{C} / \mathrm{m}^{2}$ uniformly distributed over the circular disc $r \leq a$, $\mathrm{z}=0 \mathrm{~m}$.
2. (a) Derive the expression for the capacitance of an infinite single wire running parallel to the ground.
(b) The potential field at any point in a space containing dielectric material of relative permittivity $2 \cdot 1$ is given by $V=5 x^{2} y+3 y z^{2}+6 x z$ volt where x, y, z are in metres. Find the volume charge density at point 'm'.
3. (a) Explain the Laplace's and Poisson's equations. State their significance in electrostatic field problems.
(b) Derive the boundary relations for E-field and H -field.
4. (a) Starting with Ampere's law, derive Maxwell's equation in integral form. Obtain the corresponding relation by applying the Stokes' theorem.7
(b) Obtain the expression for energy density in an electromagnetic field. Using vector potential concept, find the magnetic intensity about a long straight wire carrying current ' I '.
5. (a) Derive the relation between ' E ' and ' H ' in uniform plane wave propagation. Discuss the types of polarization.
(b) The electric fields associated with a plane wave travelling in a perfect dielectric medium is given by

$$
\mathrm{E}_{\mathrm{x}}(\mathrm{z}, \mathrm{t})=10 \cos \left[2 \pi \times 10^{7} \mathrm{t}-0 \cdot 1 \pi . \mathrm{x}\right] \mathrm{V} / \mathrm{m} .
$$

Find the velocity of propagation and intrinsic impedance. Assume $\mu=\mu_{0}$.
6. (a) Explain the methods for impedance matching and impedance measurement for a transmission line.7
(b) What is Smith's chart and why is it useful in making transmission line calculations?
7. Write short notes on any two of the following : $2 \times 7=14$
(a) Graphical Method of Solving Electrostatic Problems
(b) Snell's Law of Wave Refraction
(c) Coulomb's Law and its Applications

