B.Tech. - VIEP - ELECTRONICS AND COMMUNICATION ENGINEERING (BTECVI)

Term-End Examination
June, 2017

BIEL-010 : DIGITAL SIGNAL PROCESSING

Time : 3 hours
Maximum Marks : 70
Note: Attempt any seven questions. All questions carry equal marks. Use of scientific calculator is permitted. Missing data may be suitably assumed.

1. (a) State the relationship between DFT and Z-transform.

4
(b) Find the DFT values of the given sequence $\mathrm{x}(\mathrm{n})$ by using basic equation $\quad 6$

$$
\mathrm{x}(\mathrm{n})=[1,0,2,2,1]
$$

2. (a) Explain linear phase FIR structures. What are the advantages of such structures ? 4
(b) Determine the frequency response of FIR filter defined by

$$
y(n)=0 \cdot 25 x(n)+x(n-1)+0 \cdot 25 x(n-2)
$$

Calculate the phase delay and group delay. 6
3. (a) Find the IDFT of $Y(k)=\{1,0,0,1\}$ using DIF algorithm. 5
(b) Find the output of an LTI system having $h(n)=[1,2,3]$ for an input $x(n)=[1,0,2,2]$ by using circular convolution.
4. Discuss chirp Z-algorithm and state its use in linear filtering.
5. What is windowing technique for designing FIR filter ? Compare different windows. 10
6. Design a high-pass filter satisfying the following specifications:

$$
\begin{array}{ll}
-0.04<\left|\mathrm{H}\left(\mathrm{e}^{\mathrm{j} \omega}\right)\right|<0.04 & 0 \leq|\omega| \leq 0.2 \pi \\
0.995<\left|\mathrm{H}\left(\mathrm{e}^{\mathrm{j} \omega}\right)\right|<1.005 & 0.3 \pi \leq|\omega| \leq \pi
\end{array}
$$

The filter will be designed using the bilinear transformation and $\mathrm{T}=2 \mathrm{~ms}$.
7. Obtain the cascade and parallel form realization for the system

$$
\begin{array}{r}
\mathrm{y}(\mathrm{n})=-0 \cdot 1 \mathrm{y}(\mathrm{n}-1)+0 \cdot 2 \mathrm{y}(\mathrm{n}-2)+3 \mathrm{x}(\mathrm{n})+ \\
3 \cdot 6 \mathrm{x}(\mathrm{n}-1)+0 \cdot 6 \mathrm{x}(\mathrm{n}-2) \tag{10}
\end{array}
$$

8. Explain the IIR filter design using the bilinear transformation scheme. State its limitations. 10
9. A system is represented by a transfer function

$$
\mathrm{H}(\mathrm{z})=3+\frac{4 \mathrm{z}}{\mathrm{z}-\frac{1}{2}}-\frac{\mathrm{z}}{\mathrm{z}-\frac{1}{4}}
$$

(a) Does this $\mathrm{H}(\mathrm{z})$ represent an FIR or IIR filter? State the reason.
(b) Realize the above $\mathrm{H}(\mathrm{z})$ using direct form-I and direct form-II realization techniques. 10
10. Design an ideal high-pass filter with a frequency response

$$
\mathrm{H}_{\mathrm{d}}\left(\mathrm{e}^{\mathrm{j} \omega}\right)=\left\{\begin{array}{lc}
1 \text { for } & \pi / 4 \leq|\omega| \leq \pi \\
0 \text { for } & |\omega| \leq \pi / 4
\end{array} .\right.
$$

(a) Find the values of $\mathrm{h}(\mathrm{n})$ for $\mathrm{N}=11$ using the Hamming window concept.
(b) Find $\mathrm{H}(\mathrm{z})$ and determine the magnitude response. 10

