B.Tech. - VIEP - ELECTRONICS AND
 COMMUNICATION ENGINEERING (BTECVI)

Term-End Examination
$\square \square \square \square 4$

June, 2017

BIEL-007 : SIGNALS AND SYSTEMS

Time : 3 hours
Maximum Marks : 70
Note: Attempt any seven questions. All questions carry equal marks. Symbols used have their usual meanings.

1. (a) Distinguish between periodic, non-periodic and almost periodic signals. Give an example of each.
(b) Examine whether the given signals are periodic or not. If periodic, find out the fundamental time period.
(i) $\mathrm{x}(\mathrm{t})=\sin \frac{2 \pi}{5} \mathrm{t} \cos \frac{4 \pi}{3} \mathrm{t}$
(ii) $\mathrm{x}[\mathrm{n}]=\mathrm{u}[\mathrm{n}]+\mathrm{u}[-\mathrm{n}] \quad \begin{array}{cc}3+2=5 \\ 1 & \text { P.T.O. }\end{array}$
2. (a) For the signal $x(t)$ shown in Figure 1 given below, sketch the following :

(i) $\mathrm{x}(2-\mathrm{t})$
(ii) $\mathrm{x}\left(\frac{\mathrm{t}}{1 \cdot 5}\right)$
(iii) $x(2 t+4)$
(b) Evaluate the following integrals :
$2+2=4$
(i) $\int_{0}^{3} \exp (t-2) \delta(2 t-4) d t$
(ii) $\int_{0}^{8} t^{2} \delta(t-9) d t$
3. (a) What is a linear system ? Give an example of a linear system.
A system is described by the equation

$$
\frac{\mathrm{dy}(\mathrm{t})}{\mathrm{dt}}+2 \mathrm{y}(\mathrm{t})=\mathrm{x}(\mathrm{t})+5
$$

Examine whether the system is linear or not.
(b) Check whether the system described by the equation $y[n]=x[-n]$ is causal or not.
4. Represent a signal by a continuum of impulse and hence show that $y(t)=h(t) \otimes x(t)$, where $y(t)$ is the response of linear time-invariant system with impulse response $h(t)$ to the input $x(t)$.
5. Determine the effect of each of the following symmetry conditions on the coefficient of the Fourier series expansion for $f(\theta)$ and obtain the formula for those coefficients which do not vanish :
(a) $\mathrm{f}(\theta)=\mathrm{f}(\pi-\theta)$
(b) $\mathrm{f}(\theta)=-\mathrm{f}(\pi-\theta)$
6. (a) State the conditions to be satisfied by the signal so that its Fourier transform exists.
(b) State the duality property of continuous time Fourier transform.
(c) $\quad \operatorname{Arect}\left(\frac{\mathrm{t}}{\mathrm{T}}\right)$ and $\operatorname{ATsinc}(\mathrm{fT})$ are a Fourier transform pair. Using duality property, find the Fourier transform of Asinc(2Wt). Also sketch the magnitude spectrum.
7. (a) If $x[n] \Leftrightarrow X\left(e^{j \omega}\right)$,

$$
\begin{equation*}
\text { show that } n x[n] \Leftrightarrow j \frac{d X\left(e^{j \omega}\right)}{d \omega} \tag{5}
\end{equation*}
$$

(b) Using the above relation determine the Fourier transform of the signal

$$
\begin{equation*}
y[n]=(n-1)^{2} x[n] . \tag{5}
\end{equation*}
$$

8. (a) State the initial value theorem for Z-transform and derive its mathematical formulation. Hence find the initial value of the signal corresponding to the following Z-transformation :

$$
\mathrm{X}(\mathrm{z})=\frac{2+\mathrm{z}^{-1}}{\left(1-\mathrm{z}^{-1}\right)\left(1+0 \cdot 5 \mathrm{z}^{-1}\right)}
$$

(b) Sketch the poles and zeros of the following transfer function :

$$
\mathrm{H}(\mathrm{z})=\frac{\mathrm{z}^{2}+1}{\mathrm{z}^{2}-0.25}
$$

9. (a) Find the inverse Z-transform of

$$
\begin{equation*}
X(z)=\frac{(z-1)(z+0.8)}{(z-0.5)(z+0.2)} \tag{5}
\end{equation*}
$$

(b) Consider the system described by the difference equation $\mathrm{c}[\mathrm{n}+1]+2 \mathrm{c}[\mathrm{n}]=\delta[\mathrm{n}]$; $c[0]=0$. Obtain the system impulse response $\mathrm{c}[\mathrm{n}]$.
10. Write short notes on the following :

$$
2 \times 5=10
$$

(a) Mathematical representation of step, ramp, impulse functions and their inter-relationships
(b) Region of convergence and its properties

