No. of Printed Pages : 4 BIEL-006

B.Tech. – VIEP – ELECTRONICS AND COMMUNICATION ENGINEERING (BTECVI)

Term-End Examination

June, 2017

BIEL-006 : ELECTROMAGNETIC FIELD THEORY

Time: 3 hours

10004

Maximum Marks : 70

- Note: Attempt any seven questions. All questions carry equal marks. Symbols used have their usual meanings.
- Explain the differences between gradient, 1. (a) divergence and curl.
 - (b) A vector field is described by $F = 500 \ \overline{a}_x + 750 \ \overline{a}_v$. A plane surface in the region of the field is defined by 2x + 4y + 6z = 12. Find the vector components of F that are normal and tangential to the surface.

1

BIEL-006

6 P.T.O

Prove the following identity : 2. (a)

 $\overline{A} \times (\overline{B} \times \overline{C}) = \overline{B}(\overline{A} \cdot \overline{C}) - \overline{C}(\overline{A} \cdot \overline{B})$

6

4

6

4

 $\mathbf{5}$

5

5

5

- The vector $\overline{F} = r \sin \phi \overline{a}_{\phi}$ is given in the (b) cylindrical coordinates. Transform the vector into rectangular coordinates.
- Derive the expression for the electric field **3.** (a) intensity at a point above an infinite sheet of charge, the surface charge density given by $\rho_s C/m^2$.
 - A charge is uniformly distributed on the (b) plane surface S = 3x + 5y + 6z = 30 located in air. The surface charge density is 1.5 nC/m². Find the field intensity along the normal direction to the surface.
- State Gauss's law. Express it in point form 4. (a) and in integral form.
 - A spherical surface is uniformly charged. (b) Calculate the electric field inside, on and outside the sphere.
- What is an electric dipole ? Derive the 5. (a) expression of potential at a point due to an electric dipole.
 - Show that the Laplacian of the potential (b) function in a region of charge in a static electric field is not zero whereas the Laplacian of the potential function in the region of steady current flow is zero.

BIEL-006

- 6. (a) State Biot-Savart Law. Express it mathematically.
 - (b) Each of the three co-ordinate axes carries a filamentary current of 1 A in the \bar{a}_x , \bar{a}_y and \bar{a}_z direction. Determine the magnetic field at (2, 3, 4).
- 7. The displacement current density is $2 \cos (\omega t - 5z) \overline{a}_x \mu A/m^2$ in a material for which $\sigma = 0, \epsilon = 4\epsilon_0$ and $\mu = 5\mu_0$.
 - (a) Use the definition of displacement current density to find \overline{D} and \overline{E} .
 - (b) Now use the point form of Faraday's law and a time integration to find \overline{B} and \overline{H} .
- 8. (a) Consider the reflection phenomenon of a plane wave travelling through a medium of permittivity ε_1 and permeability μ_1 is incident normally to the surface of a perfect dielectric medium with permittivity ε_2 and permeability μ_2 . Derive the expression for the reflection and transmission coefficients for the electric and magnetic fields.
 - (b) The phase constant of a uniform plane electromagnetic wave travelling in a perfect dielectric medium is 10 rad/m. Calculate the phase velocity, wavelength frequency and intrinsic impedance of the field. The relative permittivity and relative permeability of the medium are 4.8 and 1.0 respectively.

3

BIEL-006

P.T.O.

5

5

5

10

- 9. (a) Define Transverse Magnetic waves, Transverse Electric waves and Transverse Electromagnetic waves.
 - (b) Explain why TEM waves cannot exist in a single hollow metallic waveguide.

10. Write short notes on any *two* of the following : $2 \times 5 = 10$

- (a) Equipotential Surface and its Properties
- (b) Poynting Theorem and Poynting Vector
- (c) Standing Wave Ratio and its Importance

BIEL-006

1,000

6