B.Tech. - VIEP - ELECTRONICS AND COMIMUNICATION ENGINEERING (BTECVI)

Term-End Examination

June, 2017

BIEL-003 : DIGITAL ELECTRONICS

Time : 3 hours
Maximum Marks : 70
Note: Attempt any seven questions. All questions carry equal marks. Assume any missing data suitably. Use of scientific calculator is allowed.

1. (a) Perform (54) ${ }_{10}-(27)_{10}$ using 2 's complement. 5
(b) Convert the following expressions into their canonical forms :
(i) $\mathrm{F}=\mathrm{AB}+\mathrm{ACD}+\overline{\mathrm{A}} \mathrm{BC}$
(ii) $\mathrm{F}=(\mathrm{A}+\mathrm{B})(\mathrm{A}+\overline{\mathrm{C}})(\mathrm{B})$
2. (a) Design and implement a 3-bit magnitude comparator.
(b) Design a 4-bit parallel adder. 5

BIEL-003
3. (a) What do you mean by Master-Slave flip-flop ? How does it avoid the race around condition?5
(b) What do you mean by characteristic equation of flip-flop ? Derive it for JK flip-flop.
4. (a) Differentiate between asynchronous and synchronous counter.
(b) Design a 3 -bit bidirectional synchronous counter using T-flip-flop.
5. What do you mean by tri-state logic ? Draw and explain the working of a tri-state TTL NAND gate.

$$
3+7=10
$$

6. (a) Design and implement $64 \mathrm{k} \times 8$ RAM using $8 \mathrm{k} \times 8$ RAM. 5
(b) Explain how a CMOS logic IC can be driven by a TTL logic IC.
7. (a) Draw and explain the working of a 4-bit SISO shift register with appropriate timing waveform. 5
(b) Explain the concept and design procedure of Algorithmic State Machines (ASM).
8. Simplify the given Boolean expression using K-map :

$$
\mathrm{F}=\Sigma \mathrm{m}(0,1,3,7,11,15)+\mathrm{d}(2,4,6)
$$

Also implement the simplified expression using NOR gate.
9. (a) For a 2-bit number x, design and implement $y=5 x^{2}+6 x+1$ using PLA. 5
(b) What do you mean by semiconductor memories? How do you classify them? 5
10. (a) Obtain Excess-3 and Gray code for the following :
(i) $(1453)_{10}$
(ii) $(56)_{10}$
(b) Design and implement a 4-bit binary adder and subtractor. 5

