B.Tech. - VIEP - COMPUTER SCIENCE AND ENGINEERING (BTCSVI)

Term-End Examination

June, 2017

पாேロa

BICS-014 : DESIGN AND ANALYSIS OF ALGORITHM

Time : 3 hours
Maximum Marks : 70

Note: Attempt any seven questions. All questions carry equal marks.

1. (a) Determine the time complexity of the pseudocode given below, using Big-O notation :

$$
\begin{aligned}
& \text { for } j=2 \text { to length }[A] \text { do } \\
& \{\text { key = } A[j] \\
& \begin{array}{l}
i=j-1 \\
\text { while }(i>0) \text { and }(A[i]>\text { key }) \text { do } \\
\{A[i+1]=A[i] \\
\quad i=i-1\} \\
A[i+1]=\text { key }\}
\end{array}
\end{aligned}
$$

\}
(b) State Master theorem. The recursive equation of time complexity of an algorithm is given by $T(n)=4 * T\left(\frac{\mathrm{n}}{2}\right)+\mathrm{n}$. Use Master theorem to find asymptotic bounds of $T(n)$.
2. Write the algorithm for Merge Sort. Illustrate its working by sorting the data :

$$
\begin{array}{lllllll}
33 & 26 & 35 & 29 & 18 & 10 & 24
\end{array}
$$

Analyse the performance of Merge Sort.
3. (a) What is Amortized Analysis? What is the amortized cost for the following sequence of push and pop operations :
1 push 1 push 1 push 3 pops 2 push 2 pops 2 push 2 pops

Assume that the cost of push and pop operations is 1.
(b) Explain the term Hashing. Discuss the different methods of hashing.
4. Write Floyd-Warshall algorithm. Apply it to determine the shortest path for the graph shown below :

5. Write Prim's algorithm. Apply it to find the minimum cost spanning tree for the following graph :

6. (a) For a given problem P , two algorithms A_{1} and A_{2} have respective time complexities $T_{1}(n)$ and $T_{2}(n)$, where $T_{1}(n)=4 n^{5}+3 n$ and $T_{2}(n)=2500 n^{3}+4 n$. Find the range for n and the size of an instance of the given problem, for which A_{1} is more efficient than A_{2}.
(b) Explain Strassen's algorithm, with the help of suitable example.
7. What is the Eight Queens problem ? Discuss the randomized solution for Eight Queens problem. 5+5
8. Write short notes on any two of the following :
(a) Cook's Theorem
(b) Integer Programming
(c) Probabilistic Algorithms
9. Compare and contrast any two of the following: $5+5$
(a) NP-Complete problem and NP-Hard problem
(b) NP class of problem and P class of problem
(c) Big-O notations and Big-Omega notations
10. Discuss any two of the following with suitable examples :
$5+5$
(a) Travelling Salesman Problem
(b) Monte Carlo Algorithm
(c) Greedy Algorithm
(d) Branch and Bound Technique

