B.Tech. - VIEP - COMPUTER SCIENCE AND ENGINEERING (BTCSVI)

Term-End Examination

पIロア4 4 June, 2017

BICS-010 : FORMAL LANGUAGES AND AUTOMATA

Time : 3 hours
Maximum Marks : 70
Note: Attempt any seven questions. All questions carry equal marks.

1. (a) Design a DFA for the set of all strings over 0 's and 1's such that it contains even number of 0 's and even number of 1 's.
(b) Design a DFA corresponding to the regular expression

$$
\begin{equation*}
(a+b)^{*} a b a(a+b)^{*} \tag{5}
\end{equation*}
$$

2. (a) Prove that $L=\left\{a^{i} b^{i} \mid i \geq 0\right\}$ is not regular. 5
(b) Prove that $\mathrm{L}=\left\{\mathrm{a}^{\mathrm{n}}: \mathrm{n}\right.$ is prime $\}$ is not a context-free language (CFL).
3. Write the definition of Mealy Machine and convert the following Moore Machine into equivalent Mealy Machine :

Present	Next State		Output
State	$\mathrm{a}=0$	$\mathrm{a}=1$	
$\rightarrow \mathrm{a}$	d	b	1
b	a	d	0
c	c	c	0
d	b	a	1

4. Define Turing Machine. Design a Turing Machine that accepts the language

$$
\begin{equation*}
\mathrm{L}=\left\{0^{\mathrm{n}} 1^{\mathrm{n}} 2^{\mathrm{n}} \mid \mathrm{n}>0\right\} \tag{10}
\end{equation*}
$$

5. Give the production rule for Type-0, Type-1, Type-2 and Type-3 grammars of the Chomsky hierarchy. Also name the corresponding machine accepted by the different types of languages.
6. (a) Construct a DFA equivalent to the NFA ($\{\mathrm{p}, \mathrm{q}, \mathrm{r}, \mathrm{s}\},\{0,1\}, \delta, \mathrm{p},\{\mathrm{s}\}$), where δ is given by

p	p, q	p
q	r	r
r	s	-
s	s	s

BICS-010
(b) Let G be the grammar. Find the left-most derivation, right-most derivation and parse tree for the expression $\mathrm{a} * \mathrm{~b}+\mathrm{a} * \mathrm{~b}$.

$$
\begin{aligned}
G: & S \rightarrow S+S \mid S * S \\
& S \rightarrow a \mid b
\end{aligned}
$$

7. Explain the algorithm for the conversion of a Context Free Grammar (CFG) to Chomsky Normal Form (CNF) and use it to convert the following CFG to CNF :

$$
\begin{aligned}
& \mathrm{S} \rightarrow \mathrm{bA} \mid \mathrm{aB} \\
& \mathrm{~A} \rightarrow \mathrm{bAA}|\mathrm{aS}| \mathrm{a} \\
& \mathrm{~B} \rightarrow \mathrm{aBB}|\mathrm{bS}| \mathrm{b}
\end{aligned}
$$

8. Construct a minimum state automata equivalent to the following diagram :

9. Define PDA. Design a PDA for recognizing the language

$$
\begin{equation*}
\mathrm{L}=\left\{\mathrm{a}^{\mathrm{n}} \mathrm{~b}^{2 \mathrm{n}+1} \mid \mathrm{n} \geq 1\right\} \tag{10}
\end{equation*}
$$

10. Write short notes on any two of the following : $2 \times 5=10$
(a) Undecidability and Reducibility
(b) Church-Turing Thesis
(c) The set P, NP and NP Complete
