## B.Tech. - VIEP - COMPUTER SCIENCE AND ENGINEERING (BTCSVI)

Term-End Examination
पIGE4
June, 2017
BICS-008 : DISCRETE MATHS STRUCTURE
Time: 3 hours
Maximum Marks : 70
Note: Answer any seven questions. All questions carry equal marks.

1. (a) What do you mean by functionally complete sets ? List out some functionally complete sets?
(b) Show that the following formulae are Tautologies:
(i) $((\mathrm{P} \rightarrow \mathrm{Q}) \rightarrow \mathrm{R}) \rightarrow((\mathrm{P} \rightarrow \mathrm{Q}) \rightarrow(\mathrm{P} \rightarrow \mathrm{R}))$
(ii) $\quad(\mathrm{P} \rightarrow \mathrm{Q}) \leftrightarrow(\sim \mathrm{Q} \rightarrow \sim \mathrm{P})$
(c) Obtain the principle conjunctive normal form for the following formula:3

$$
(P \wedge Q) \vee(\sim Q \wedge R)
$$

2. (a) What do you mean by a variable and statement function in predicate calculus?
(b) What is a quantifier? What are the various types of quantifiers?3
(c) Show that $\sqrt{2}$ is not a rational number, using proof by contradiction.
3. (a) What is pigeonhole principle? What are its applications?
(b) Find the inverse of the following functions: $3+2$
(i) $\mathrm{f}(\mathrm{x})=(\mathrm{x}+1) / \mathrm{x}$
(ii) $\mathrm{f}(\mathrm{x})=4 \mathrm{e}^{(3 \mathrm{x}+1)}$
4. (a) Obtain the principle conjunctive normal forms of the following formulae :
(i) $(P \Leftrightarrow Q) \rightarrow R$
(ii) $(\mathbf{P} \rightarrow \mathbf{Q}) \Leftrightarrow(\mathbf{Q} \rightarrow \sim \mathrm{R})$
(b) Obtain the truth table for the following formula :

5

$$
(\mathbf{P} \uparrow \mathbf{Q} \uparrow \mathbf{R})
$$

5. (a) Prove the validity of the following argument using propositional logic :
$\mathrm{A} \rightarrow(\mathrm{B} \rightarrow \mathrm{C}), \mathrm{B} \rightarrow(\mathrm{C} \rightarrow \mathrm{D}) \Rightarrow \mathrm{A} \rightarrow(\mathrm{B} \rightarrow \mathrm{D})$
(b) Explain epimorphism and monomorphism in detail.
6. (a) Show that the intersection of two submonoids of a monoid is a monoid.
(b). Explain endomorphism and automorphism with suitable examples.
7. (a) How many solutions are there to the equation $x_{1}+x_{2}+x_{3}=19$, where $x_{1}, x_{2}$ and $x_{3}$ are non-negative integers with $x_{1}>1$, $\mathrm{x}_{2}>2$ and $\mathrm{x}_{3}>1$ ?
(b) State and prove Pascal Identity.
8. (a) Find the generating functions for the number of integer solutions of $2 \mathrm{w}+3 \mathrm{x}+5 \mathrm{y}+7 \mathrm{z}=\mathrm{n}, 0 \leq \mathrm{w}, \mathrm{x}, \mathrm{y}, \mathrm{z} . \quad 5$
(b) Find the solution for recurrence relation using the method of determined coefficients :

$$
a_{n}-7 a_{n-1}+12 a_{n-2}=n 2^{n}
$$

9. (a) What is the significance of planar graphs ? Is $\mathrm{K}_{3,3}$ planar? $\quad 5$
(b) Write an algorithm for depth first search spanning tree.
10. (a) Write a short note on Euler graphs.5
(b) List out the rules to find the chromatic number of a given graph.
