No. of Printed Pages : 3

ET-540(B)

B.Tech. Civil (Construction Management)

Term-End Examination

June, 2017

ET-540(B) : FLOW IN OPEN CHANNEL

Time : 3 hours

00075

Maximum Marks: 70

4

4

6

P.T.O.

Note: Solve any five questions. All questions carry equal marks. Neat and labelled sketches must be given, if required. Use of scientific calculator is allowed.

- 1. (a) Classify the following as R.V.F./G.V.F, giving reasons :
 - (i) Flow over a broad-crested weir
 - (ii) Flow in a riser upstream of a dam
 - (iii) Flow through a hydraulic jump
 - (iv) Flow in the neighbourhood of a location where a prismatic channel changes bed slope
 - (b) Classify the type of flow while a surge travels upstream, giving reasons.
 - (c) Define hydraulic grade line, energy line and bed of the channel. When would these 3 lines be parallel to each other ? Give reasons.

ET-540(B)

1

- 2. (a) A 4 m wide rectangular channel has a bed slope of 0.0012 and n = 0.015. It carries a flow of 58 m³/s. Determine the normal depth, Froude number and state of flow.
 - (b) What is critical depth of flow ? On what factors does y_c depend, and why ? What is critical discharge ?

7

7

6

8

8

6

14

10

4

- **3.** (a) What is specific energy ? How is it different from total energy ? Why is it preferred for use in equations concerning an open channel ?
 - (b) Draw a typical E-y curve and explain its characteristics and use in solving problems.
- **4.** (a) Derive the equation for specific force. What are the assumptions involved ?
 - (b) When the specific force curve, critical depth curve and specific energy curve in an open channel are tangential to each other, what does it indicate? Explain.
- 5. Derive the dynamic equation with respect to a gradually varied flow.
- (a) Discuss the relationship amongst y_n, y_c and y in a gradually varied flow, explaining how it helps in classifying various water surface profiles.
 - (b) Sketch (and label) the G.V.F. profile when the bed slope changes from mild to steep.

ET-540(B)

2

- 7. A rectangular channel (b = 6.0 m) carries a flow of 8 m³/s at a depth of 1 m when n = 0.019. A dam on it, just upstream of itself, causes the depth to increase by 0.2 m. Take $\alpha = 1.1$, and find (in one step), the distance upstream of the dam, where the depth is 0.10 m more than the normal depth. Tabulate your results.
- 8. Write short notes on any *two* of the following: $2 \times 7 = 14$
 - (a) Reynolds number and its usefulness
 - (b) Isovels in open channel sections of different shapes
 - (c) Derivation of the momentum equation for the flow under a sluice gate
 - (d) Factors influencing Manning's n in an open channel

ET-540(B)

14