B.Tech. Civil (Construction Management) / B.Tech. Civil (Water Resources Engineering)
 Term-End Examination
 June, 2017

ET-502(B) : STRUCTURAL ANALYSIS

Time : 3 hours
Maximum Marks : 70
Note: Attempt any five questions. All questions carry equal marks. Use of scientific calculator is permitted. Assume any missing data suitably.

1. A live load of $20 \mathrm{kN} / \mathrm{m}$ moves on a simply supported girder of 20 m . Find the maximum bending moment which can occur at a section 5 m from the left end. The length of load is greater than the span. Use influence line diagram to solve this problem.
2. A three-hinged arch of span 40 m and rise 10 m carries concentrated loads of 20 kN and 15 kN at distance 8 m and 16 m from the left end and a uniformly distributed load of $5 \mathrm{kN} / \mathrm{m}$ on the right half of the span (Figure 1). Find the reactions at A and B . Also determine the horizontal thrust.

Figure 1
3. Determine the strain energy stored in the aluminium rod ABC as shown in Figure 2.

Figure 2
Take E for aluminium as $75 \times 10^{9} \mathrm{~N} / \mathrm{m}^{2}$. 14
4. Show that the ratio of the strength of a solid column to that of a hollow one of the same cross-sectional area is 25/7.
The internal diameter of the hollow column is $\frac{3}{4}$ of the external diameter. The columns have the same length and are pinned at the ends.
5. A portal frame ABCD is fixed at A and D , and is loaded as shown in Figure 3. Treating joints B and C as rigid, calculate the moment at $\mathrm{A}, \mathrm{B}, \mathrm{C}$ and D .

Figure 3
6. Analyse the continuous beam as shown in Figure 4 by moment distribution method.

Figure 4
Determine the moments at A, B and C. Also draw the bending moment diagram.
7. (a) Show that the shape factor for a circular section is 1.70 .
(b) A simply supported beam of span L carries a uniformly distributed load w (total load) over the whole span as shown in Figure 5. The plastic moment of resistance is M_{P}. Show that the value of collapse load is $\frac{8 \mathrm{M}_{\mathrm{P}}}{\mathrm{L}}$.

Figure 5
8. A propped cantilever beam of span L is fixed at A and propped at B. The beam carries a concentrated load W as shown in Figure 6. Both the supports A and B are at the same level. Show that the reaction at the prop is $5 \mathrm{~W} / 16$. 14

Figure 6

