No. of Printed Pages : 5

ET-301(A)/ET-534(B)(S)

B.Tech. Civil (Construction Management) / B.Tech. Civil (Water Resources Engineering)

Term-End Examination

June, 2017

00238

ET-301(A)/ET-534(B)(S) : SYSTEMS METHODS

Time : 3 hours

Maximum Marks : 70

Note: All questions are compulsory. Use of scientific non-programmable calculator is allowed.

- **1.** Answer any six of the following : $6 \times 5 = 30$
 - (a) Describe the 'system' with the help of three suitable examples.
 - (b) What do you understand by 'Air pollution', 'Water pollution' and 'Ground pollution' ? Cite at least one example for each type.
 - (c) Why is D.C. series motor selected for electric traction work ? Explain.
 - (d) With the help of suitable examples, differentiate between a block diagram and an interconnection diagram.
 - (e) What are the two types of control systems? Give at least two examples of each type.

1

ET-301(A)/ET-534(B)(S)

1

P.T.O.

- (f) Explain Kirchhoff's law for any electric network.
- (g) Write the characteristics of process control systems.
- (h) Define 'social system'. What are the features of a social system ?
- (i) Draw/write various energy conversion systems to obtain electrical energy.
- 2. Answer any *two* of the following :
 - A company owns two flour mills, M and N, (a) which have different production capacities for high, medium and low grade flour. The company has entered into a contract to supply flour to a firm every month with at least 18, 12 and 24 quintals of high, medium and low grade, respectively. It costs the company ₹ 20,000 and ₹ 18,000 per day to run the mills, M and N respectively. On a day, Mill M produces 2, 4 and 8 quintals of medium and low grade high. flour respectively. Mill N produces 2, 2 and 12 quintals of high, medium and low grade flour respectively. How many days per month should each flour mill be operated in order to meet the contract economically?

2

10

I

ET-301(A)/ET-534(B)(S)

(b) A company has three factories at F_1 , F_2 and F_3 which supply warehouses at W_1 , W_2 and W_3 respectively. Weekly factory capacities are 200, 160 and 90 units respectively. Weekly warehouse requirements are 180, 120 and 150 units respectively. Unit shipping costs (in rupees) are as follows :

······		Warehouses				
			W ₂	W ₃	Supply	
Factories	$\mathbf{F_1}$	16	20	12	200	
	\mathbf{F}_2	14	8	18	160	
	F ₃	26	24	16	90	
Demand		180	120	150		

Determine the optimal distribution for this company to minimize shipping costs.

(c)

A company decides to make four sub-assemblies through four contractors. Each contractor is to receive only one sub-assembly. The cost (in hundreds of rupees) of each sub-assembly is determined by the bids submitted by each contractor and is shown in the following table. Assign the different sub-assemblies to the contractors so that the total cost gets minimized.

		Contractors			
		1	2	3	4
Sub-assemblies	Α	15	13	14	17
	В	11	12	15	13
	С	13	12	10	11
	D	14	17	14	16

ET-301(A)/ET-534(B)(S)

P.T.O.

10

10

3

3. Attempt any *two* of the following :

(a) A project comprises of eight activities. The precedence relationship and estimated duration of the eight activities are given as follows:

Activity	Immediate Predecessor	Expected time to complete		
Α	_	3		
В	_	2		
С	_	5		
D	Α	5 -		
Е	A	4		
F	Α	7		
G	B, D	10		
Н	C, F	10		

- (i) Draw the project network and label the same.
- (ii) Estimate the project duration.

4

- (iii) Identify the critical activities and critical path.
- (iv) Re-estimate the project duration, if the activity B gets delayed by 8 days.

3+2+2+3

ET-301(A)/ET-534(B)(S)

ļ

- (b) A booking counter takes 12 minutes to book a ticket for each customer. If the customers are arriving according to Poisson Distribution with a rate of 7 per hour, find out : 4+3+3
 - (i) Expected queue length
 - (ii) Expected waiting time of a customer in the queue
 - (iii) Expected time a customer spends in the system
- (c) Write short notes on any *four* of the following: $4 \times 2\frac{1}{2} = 10$
 - (i) Economic Order Quantity
 - (ii) Kendall's Notation
 - (iii) Fulkerson's Rule
 - (iv) Duality in Linear Programming
 - (v) Transhipment Problem

ET-301(A)/ET-534(B)(S)

500