B．Tech．Civil（Construction Management）／

B．Tech．Civil（Water Resources Engineering）／
B．Tech．（Aerospace Engineering）
Term－End Examination
ロロミリラ June， 2017

ET－201（B）：ENGINEERING THERMODYNAMICS

Time： 3 hours
Maximum Marks ： 70
Note：Answer any seven questions．All questions carry equal marks．Use of steam tables and scientific calculator is permitted．

1．（a）Explain the following in brief with suitable
examples ：
（i）Macroscopic Approach
（ii）Microscopic Approach
（b）Define Pressure．Express the relationship among absolute pressure，atmospheric pressure，gauge pressure and vacuum．
2. (a) State the zeroth law of thermodynamics. The readings t_{1} and t_{2} of two Celsius thermometers agree at the ice point and at the steam point. They are related by the equation

$$
\mathrm{t}_{1}=\mathrm{A}+\mathrm{Bt}_{2}+\mathrm{Ct}_{2}^{2}
$$

between these two points, where A, B and C are constants. When both are immersed in an oil bath, t_{1} is $51^{\circ} \mathrm{C}$ while t_{2} is $50^{\circ} \mathrm{C}$. Determine the value of t_{1} when t_{2} reads $25^{\circ} \mathrm{C}$.
(b) What are the modes of heat transter?
3. State the steady flow energy equation (SFEE).
Derive the SFEE for a steam turbine.
4. (a) State the second law of thermodynamics. Explain open cycle gas turbine power plant. 5
(b) In a steam power plant the work output of the turbine is 100 kJ while heat supplied at the boiler is 300 kJ . Given that during the same period work input to the pump is 0.5 kJ , find the heat rejected at the condenser and thermal efficiency of the plant.
5. Explain the following :
(a) Reversible Process
(b) Irreversible Process
(c) Reversible Heat Engine
(d) Coefficient of Performance (COP)
6. (a) Calculate the value of C_{v} for air ($\mathrm{M}=28.97 \mathrm{~kg} / \mathrm{kmol}$) assuming its C_{p} to be $1005 \mathrm{~J} / \mathrm{kg}-\mathrm{K}$.
(b) Derive the expression 5

$$
C_{p}-C_{v}=R
$$

7. (a) A closed tank contains 12 kg of nitrogen at 40 MPa and $200^{\circ} \mathrm{C}$. Compute the pressure that results if the temperature is lowered to $-75^{\circ} \mathrm{C}$.
(b) Define dryness fraction. How is dryness fraction measured ?
8. (a) Derive the relationship for work of compression in a steady flow.7
(b) Explain the significance of intercooling in multistage compression.
9. With a neat diagram, explain the working of a vapour absorption refrigeration system.10
