B.Tech. Civil (Construction Management) / B.Tech. Civil (Water Resources Engineering) / **B.Tech.** (Aerospace Engineering)

Term-End Examination

00615

June, 2017

ET-201(A): MECHANICS OF FLUIDS

Ti	Time: 3 hours Maximum Marks: 7				
Note: Attempt any seven questions. Assume any missing data suitably. Use of scientific calculator is permitted.					
1.	(a) Define rotational and vortex flow.				
	(b) Derive an expression for discharge for flow through an orifice.				
2.	The velocity potential is given by $\phi = x^2 - y^2$. Does this represent a possible flow field? If so, prove that the flow is irrotational.				
3.	(a) Derive Bernoulli's equation. Also state the basic assumptions made.				
	(b) Define laminar, turbulent and steady flow. 5				
ET-	-201(A) 1 P.T.O.				

		write the advantages of dimensional analysis.	5
**************************************	(b)	Show that for a cone bearing, the torque T required to rotate the shaft at a constant angular speed ω rad/s is	
		$T = \pi \mu \omega \tan^3 \theta$. $\sec \theta/2d$	
		where 2θ is the vertex angle of the cone and 'd' will be the gap between the cone and the bearing.	5
5.	(a)	Explain the following:	5
		(i) Vena contracta	
		(ii) Orifice	
		(iii) Weir and Notch	
		(iv) Surface tension and Viscosity	
		(v) Velocity of approach	
	(b)	1 mm apart and the gap is filled with an oil of viscosity 0.8 kg/m-sec. Determine the	
		power required to rotate the upper disc at 600 rpm while holding the lower one	
		stationary.	5
6.	If u	= yz + t, v = xz - t, w = xy, find the	
		eleration at a point $(2, 1, 3)$ at time $t = 0.5$ sec.	10
7.	(a)	Obtain the solution of the Navier-Stokes equation for the ease of Hagen-Poiseuille	(*)
		flow between parallel plates.	5
ET	-201(/	4) 2	

4. (a) Explain similitudes and model studies. Also

	(b)	Distinguish between the Eulerian and Lagrangian approach to fluid flow analysis. 5
8.	(a)	Differentiate between the following: 6
		(i) Hagen-Poiseuille flow and Couette flow
		(ii) Streamline and Pathline
		(iii) Absolute viscosity and Kinematic viscosity
	(b)	Classify flows as uniform, one-dimensional, two-dimensional and three-dimensional flows, giving examples. 4
9.	Desc	eribe the following: $5 \times 2 = 10$
	(a)	Local and average friction coefficient
	(b)	Buckingham theorem
10.	Writ	the short notes on the following: $5 \times 2 = 10$
	(a)	Pascal's Law and its Significance
	(b)	Reynolds Number and its Application