B.Tech. Civil (Construction Management) /

B.Tech. Civil (Water Resources Engineering) /
B.Tech. (Aerospace Engineering) / BTCLEVI / BTMEVI / BTELVI / BTECVI / BTCSVI

Term-End Examination
June, 2017

ET-101(A) : MATHEMATICS - I

Time: 3 hours
Maximum Marks : 70
Note: All questions are compulsory. Use of scientific calculator is permitted.

1. Answer any five of the following:
$5 \times 4=20$
(a) Evaluate any one of the following:
(i) $\lim _{x \rightarrow \infty}\left(1+\frac{1}{x^{2}}\right)^{x}$
(ii) $\lim _{x \rightarrow 0} \frac{1-\cos x}{\sin ^{2} x}$
(b) For what value of b is

$$
g(x)=\left\{\begin{array}{cc}
x & x<-2 \\
b x^{2} & x \geq-2
\end{array}\right.
$$

continuous at every x ?
(c) If $y=e^{a \sin ^{-1}} x$, prove that:
(i) $\left(1-x^{2}\right) y_{2}-x y_{1}-a^{2} y=0$
(ii) $\left(1-\mathrm{x}^{2}\right) \mathrm{y}_{\mathrm{n}+2}-(2 \mathrm{n}+1) \mathrm{xy}_{\mathrm{n}+1}-$

$$
\left(\mathrm{n}^{2}+\mathrm{a}^{2}\right) \mathrm{y}_{\mathrm{n}}=0
$$

(d) If $y=\frac{x}{\log _{e} x}$, show that $x=e$ gives the minimum value of y.
(e) If $\mathrm{x}^{\mathrm{y}}=\mathrm{e}^{\mathrm{x}-\mathrm{y}}$,
prove that

$$
\frac{d y}{d x}=\frac{\log x}{(1+\log x)^{2}}
$$

(f) If $x=r \cos \theta, y=r \sin \theta$,
evaluate

$$
\frac{\partial(\mathbf{x}, \mathrm{y})}{\partial(\mathrm{r}, \theta)}
$$

(g) Show that the curves
$x^{3}-3 x y^{2}=2$ and $3 x^{2} y-y^{3}=2$ cut orthogonally.
(h) Find the volume of the largest possible right circular cylinder that can be inscribed in a sphere of radius R.
2. Answer any four of the following :
(a) Evaluate any one of the following:
(i) $\int \frac{1}{(x-3) \sqrt{x+1}} d x$
(ii) $\int \sin ^{5} x d x$
(b) Evaluate any one of the following:
(i) $\int_{1}^{2} \frac{x}{x^{2}+1} d x$
(ii) $\int_{0}^{\pi / 2} \frac{\sqrt{\sin x}}{\sqrt{\sin x}+\sqrt{\cos x}} d x$
(c) Find the value of

$$
\int_{2}^{10} \frac{1}{1+x} d x
$$

by using Simpson's $\frac{1}{3}^{\text {rd }}$ rule using nine ordinates.
(d) Find the area bounded by the curves $\mathrm{y}^{2}=9 \mathrm{x}$ and $x^{2}=9 y$.
(e) Find the length of the curye $\mathrm{x}=\mathrm{a} \cos ^{3} \theta, \mathrm{y}=\mathrm{a} \sin ^{3} \theta$, in the first quadrant.
(f) Solve (any one) :
(i) $\mathrm{x} \frac{\mathrm{dy}}{\mathrm{dx}}+\cot \mathrm{y}=0$ given $\mathrm{y}=\frac{\pi}{4}$,

$$
\text { where } x=\sqrt{2}
$$

(ii) $\frac{d y}{d x}=(4 x+y+1)^{2}$
3. Answer any four of the following :
$4 \times 4=16$
(a) A particle moves along the curve
$\mathrm{x}=\mathrm{t}^{3}+1, \mathrm{y}=\mathrm{t}^{2}, \mathrm{z}=2 \mathrm{t}+3$, where t is the time. Find the components of its velocity and acceleration at $\mathrm{t}=1$ in the direction $\hat{i}+\hat{j}+3 \hat{k}$.
(b) Find grad f at the point $(1,2,-1)$, where $\mathrm{f}=\mathrm{x}^{2} \mathrm{y} \mathrm{e}^{\mathrm{z}}$.
(c) Prove that $\overrightarrow{\mathbf{a}} \cdot \nabla \mathbf{r}=$ constant, where $\overrightarrow{\mathbf{a}}$ is a constant vector.
(d) If the vector

$$
\begin{array}{r}
\mathbf{P}=(a x+3 y+4 z) \hat{i}+(x-2 y+3 z) \hat{j}+ \\
\quad(3 x+2 y-z) \hat{k}
\end{array}
$$

is solenoidal, then determine the constant a.
(e) Show that $\mathrm{f}=\mathrm{ax}{ }^{2}+\mathrm{by}^{2}+\mathrm{cz}^{2}$, satisfies Laplace's equation $\nabla^{2} f=0$, provided $a+b+c=0$.
(f)

If $\mathbf{F}=(x+2 y+a z) \hat{i}+(b x-3 y-z) \hat{j}+$ $(4 x+c y+2 z) \hat{k}$, find a, b and c, so that F is irrotational. Also find its scalar potential.
4. Answer any six of the following :
(a) Solve the equation for $\mathrm{x}, \mathrm{y}, \mathrm{z}$ and w if

$$
2\left[\begin{array}{cc}
x & z \\
y & w
\end{array}\right]+3\left[\begin{array}{cc}
1 & -1 \\
0 & 2
\end{array}\right]=3\left[\begin{array}{ll}
3 & 5 \\
4 & 2
\end{array}\right]
$$

(b) Find the determinant of the matrix

$$
\left[\begin{array}{ccc}
3 & -1 & -2 \\
0 & 0 & -1 \\
3 & -5 & 0
\end{array}\right]
$$

(c) Express the matrix

$$
A=\left[\begin{array}{ccc}
2 & -2 & -4 \\
-1 & 3 & 4 \\
1 & -2 & -3
\end{array}\right]
$$

as the sum of a symmetric and a skew-symmetric matrix.
(d) Find the inverse of the matrix

$$
A=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & \cos \theta & \sin \theta \\
0 & \sin \theta & -\cos \theta
\end{array}\right]
$$

(e) Solve the following equations by matrix method (or by Cramer's rule) :

$$
\begin{aligned}
& x+y+z=3 \\
& x-2 y+3 z=2 \\
& 2 x-y+z=2
\end{aligned}
$$

(f) Determine the rank of the matrix

$$
A=\left[\begin{array}{lll}
2 & 1 & -1 \\
0 & 3 & -2 \\
2 & 4 & -3
\end{array}\right]
$$

(g) Verify the given matrix

$$
A=\left[\begin{array}{rr}
1 & -2 \\
& \\
4 & 5
\end{array}\right]
$$

satisfies its characteristic equation. Also find A^{-1}.
(h) Find the eigenvalues and eigenvectors of the matrix

$$
A=\left[\begin{array}{rr}
4 & 8 \\
0 & -5
\end{array}\right]
$$

