B.Tech. AEROSPACE ENGINEERING (BTAE)

Term-End Examination

00004

June, 2017

BASE-005: INTRODUCTION TO COMPUTATIONAL FLUID DYNAMICS

Time: 3 hours		hours Maximum Marks : 7	Maximum Marks: 70	
Note: Answer any seven questions. All questions carry equal marks. Use of scientific calculator is permitted.			-	
1.	(a)	What are the important applications of CFD in engineering?	5	
	(b)	Panel method.	5	
2.	(a)	Derive the continuity equation for an inviscid flow in partial differential non-conservation form.	5	
	(b)	Discuss in detail about shock capturing and shock fitting methods.	5	

3. Solve the following equations by the Gauss-Seidel method:

$$10x_1 - 2x_2 - x_3 - x_4 = 3$$

$$-2x_1 + 10x_2 - x_3 - x_4 = 15$$

$$-x_1 - x_2 + 10x_3 - 2x_4 = 27$$

 $-x_1 - x_2 - 2x_3 + 10x_4 = -9$

10

5

- 4. (a) Explain the need for turbulence modeling in dealing with CFD problems. What are the various turbulence models used in CFD problems?
 - (b) Explain the algebraic grid generation technique. 5
- **5.** Describe the Von Neumann stability analysis with suitable examples. 10
- 6. (a) Using Taylor's series, derive the backward difference expression for $\frac{\partial u}{\partial y}$.
 - (b) How are the boundary conditions and initial conditions applied to the nozzle flow? 5
- 7. Using vortex panel method, obtain the lift generated by a plate considering N vortex panels. Make necessary assumptions.

- 8. What is a Finite Element Method (FEM)?

 Explain why should one use it. 10
- **9.** Write short notes on the following: $4 \times 2 \frac{1}{2} = 10$
 - (a) Consistency
 - (b) Supersonic Flow
 - (c) Weighted Residual Formulation
 - (d) Round-off and Discrimination Errors