P.T.O.

B.Tech. AEROSPACE ENGINEERING (BTAE)

Term-End Examination

00284

Time: 3 hours

June, 2017

BAS-002: APPLIED CHEMISTRY

Time: 3 hours Maximum Marks: 70						
No		Attempt any seven questions. All questions carry equal marks. Use of scientific calculator is permitted.				
	* *					
1.	(a)	Calculate the energy to shift an electron from the first Bohr's orbit to the fifth orbit in a hydrogen atom. Also, determine the wavelength of emitted radiations if the electron returns to the initial orbit.				
	(b)	What is the shape of <i>p</i> -orbitals? Draw labelled diagrams. How many nodes are there in $3p$ -orbitals?				
2.	(a)	What is Ionisation Energy (IE) ? Discuss the factors on which IE depends.				
	(b)	What is lanthanide contraction? How can the similarities in the chemical properties of the lanthanides be explained?				
BAS	S-002	1				

3.	(a)		"Of all the inert gases, only xenon forms compounds with fluorine."	$2\frac{1}{2}$
			Explain.	2
		(ii)	Explain why gold and silver are generally found in nature in the native	1 11
			state.	$2\frac{1}{2}$
	(b)	form	ict the geometry of the complexes ed by transition metal ions using the wing hybrid orbitals with the help of	
			nce bond theory:	5
		(i)	sp^3	
		(ii)	d^2sp^3	
4.	(a)	(i)	For the formation of SO_3 according to the equation	(ر ,
			$2SO_2 + O_2 \rightleftharpoons 2SO_3$; $\Delta H = -ve$,	
			outline the conditions favourable for the formation of SO_3 .	3
		(ii)	Give the equation for the manufacture of urea.	2
	(b)	(i)	Explain why transition metal compounds are coloured.	2
		(ii)	Write the electronic configuration of the following elements:	1
			$_6\mathrm{C}$ and $_{15}\mathrm{P}.$	3

5.	(a)	Write the structure of	4
		(i) 2, 2, 4-trimethylhexane	
		(ii) 2, 3-dimethylbutane	
	(b)	(i) What is petroleum?	
		(ii) Explain the term "petroleum refining".	6
		10.1 4 HCT (g) = 0. (g) = 200, (g) + 2HJ	
6.	(a)	(i) What are the important features of	
		Galvanic cell?	3
		(ii) Give the representation of ${\rm Zn\text{-}CuSO}_4$	
		cell.	2
	(b)	Predict whether the following reaction would occur spontaneously at 298 K:	5
		$Co(s) + Fe^{2+}(aq) \longrightarrow Co^{2+}(aq) + Fe(s)$	
		Given $[Co^{2+}] = 1 \text{ M}$, $[Fe^{2+}] = 1 \text{ M}$	
	•	$E^{\circ}_{Co^{2+}/Co} = -0.28 \text{ V}$	
		$E_{Fe^{2+}/Fe} = -0.44 \text{ V}$	
7.	(a)	(i) List any two factors which promote corrosion.	2
		(ii) What is meant by barrier protection for	
		prevention of corrosion ?	3
	(b)	What are fuel cells ? Explain $N_2 - O_2$ fuel	
		cell with reactions occurring at cathode and anode. How is it difficult to construct fuel	
		cells?	5

8. (a) Derive a relationship between K_p and K_c .

(b) Write K_c expressions for the following reactions:

3

- $\mathrm{(i)}\quad \mathrm{Cu^{2+}\,(aq)} + 2\ \mathrm{Ag\,(s)} \Longrightarrow \mathrm{Cu\,(s)} + 2\ \mathrm{Ag^{+}\,(aq)}$
- (ii) $4 \text{ HCl } (g) + O_2(g) \rightleftharpoons 2 \text{Cl}_2(g) + 2 \text{H}_2 O(g)$
- (c) What is the relationship between concentration quotient (Q) and equilibrium constant (K)?

3

9. (a) The value of equilibrium constant for the reaction $H_2(g) + I_2(g) \rightleftharpoons 2HI(g)$ at 720 K is 48. What is the value of equilibrium constant for the following reactions?

5

- $\mathrm{(i)} \quad 2\mathrm{HI}\left(\mathrm{g}\right) \rightleftarrows \ \mathrm{H}_{2}\left(\mathrm{g}\right) + \mathrm{I}_{2}\left(\mathrm{g}\right)$
- $\mathrm{(ii)} \quad \frac{1}{2}\,\mathrm{H}_{2}\left(\mathrm{g}\right) + \frac{1}{2}\,\mathrm{I}_{2}\left(\mathrm{g}\right) \rightleftharpoons \;\mathrm{HI}\left(\mathrm{g}\right)$
- $\text{(iii)} \ \ \text{HI}\left(g\right) \Longleftrightarrow \ \frac{1}{2} \, \text{H}_2\left(g\right) + \frac{1}{2} \, \text{I}_2\left(g\right)$
- (b) What is the degree of dissociation? Derive an expression for the degree of dissociation of weak monobasic acid having concentration of C moles/litre.

5