No. of Printed Pages : 4

MCS-012

MCA (Revised) / BCA (Revised) Term-End Examination June, 2017

MCS-012 : COMPUTER ORGANISATION AND ASSEMBLY LANGUAGE PROGRAMMING

Time : 3 hours

Maximum Marks : 100 (Weightage 75%)

- Note: Question number 1 is compulsory and carries 40 marks. Attempt any three questions from the rest.
- (a) Add the following decimal numbers using 8 bit signed 2's complement notation. Indicate overflow, if any.
 - (i) 50 and -5
 - (ii) +75 and +85
 - (b) Represent the following using IEEE 754 single precision (32 bit) floating point number format :

1

(i) -20.75

(ii) + 32.50

MCS-012

P.T.O.

4

4

 (c) Prepare the truth table for the following Boolean expressions and simplify using K-map:

6

4

8

6

4 4

- (i) $A\overline{B}\overline{C} + \overline{A}B\overline{C}$
- (ii) $(\mathbf{A} + \mathbf{B})(\mathbf{\overline{A}} + \mathbf{\overline{B}})$
- (d)
- Explain the following addressing modes with an example each :
 - (i) Register Addressing

(ii) Register Indirect

- (e) Illustrate the following operations using four-bit registers R1 and R2 :
 - (i) Selective Set
 - (ii) Mask
 - (iii) Selective Complement

(iv) Insert

Make suitable assumptions.

- (f) Write an assembly language program for 8086 microprocessor to check if two byte values stored in consecutive memory locations are identical. Store '1' as a result in the next memory location if they are same, else store '0'.
- (g) A memory has a capacity of $1 \text{ M} \times 16$.
 - (i) How many data input and output lines does it have ?
 - (ii) How many address lines does it have ? (Assume word addressing)
- (h) Design a half adder.

MCS-012

		. ,
2. (a)	Explain the Hamming Error Correcting Code. A 4-bit data 1100 is received as 1101.	· · ·
	How will the Hamming error correcting code detect and correct the error ?	10
(b)	Explain the use of stack for parameter passing in a subroutine/function call.	5
(c)	Explain the design of a 4×1 multiplexer.	5
3. (a)	Discuss the use of Interrupt Vector Table (IVT) in handling interrupts for 8086	
	microprocessor.	5
(b)	Explain the following in the context of cache memory:	10
	(i) Direct mapping(ii) Set associative mapping	
(c)	The seek time of a disk is 25 ms. Each track of this disc has 500 sectors. If the disc rotates at 5000 rotations per second, find	
	the access time.	5
4. (a)	Explain the concept of Instruction pipelining, using suitable illustration.	5
(b)	Discuss the register set of 8086	G
(c)	Explain the structure of a Wilkes control	U
(d)	Explain the differences between exe and	5
	com programs in the context of 8086 assembly language programming.	4
MCS-012	3 P.T	.0.
-		•

- 5. (a) Explain the following with the help of a diagram/example, if needed :
 - (i) D flip-flop
 - (ii) Read Only Memory (ROM)
 - (iii) Opcode in an instruction

(iv) Parity bit

(b) List the differences between the following :

(i) LEA and MOV instructions in 8086

(ii) ROL and RCL instructions in 8086

(c) Write an assembly language program in 8086 to move a block of 100 bytes from one memory block to another. Make suitable assumptions.

MCS-012

8

5

7