BACHELOR OF COMPUTER APPLICATIONS (BCA) (Pre-Revised)

Term-End Examination

01521
June, 2017

CS-62 : ‘C’ PROGRAMMING AND DATA
 STRUCTURES

Time: 2 hours
Maximum Marks : 60
Note: Question number 1 is compulsory. Answer any three questions from the rest. All algorithms should be written nearer to 'C' language syntax.

1. (a) Write the following Infix expressions into Prefix notation:
(i) $\mathrm{x} * \mathrm{y} * * \mathrm{z}-\mathrm{j} / \mathrm{k} * \mathrm{i}+l$
(ii) $a+b * c / d-e * * f$

Note : Show step-by-step conversion process.
(b) Write an algorithm to traverse a Graph using Depth First Search (DFS) and also illustrate this algorithm with the help of an example graph.
(c) Write algorithms to perform the following operations in a Circular Queue :
(i) Create a circular queue with "N" elements.

(ii) Check whether the queue is empty or
full.
(iii) Insert and delete an element. 3
(d) Write a C program using pointers, to swap the values of two variables x and y. Also, explain its logic.
2. (a) Write an algorithm to multiply two matrices $\mathrm{A}(\mathrm{m} \times \mathrm{n})$ and $\mathrm{B}(\mathrm{n} \times \mathrm{p})$ and store the product in matrix C.
(b) Write an algorithm to implement bubble sort. Illustrate this for the following list of numbers given below :

$$
115,6,101,3,21,44,60,4
$$

3. (a) Write a recursive function to find out the "Greatest Common Divisor (GCD)" for 2 numbers given as input.
(b) Write a C program using structures, to generate pay-slips for 5 employees working in a retail medical store, if their Basic, DA, TA, Other Allowances and Deductions (Tax, LIC) are given as inputs.
Note : Assumptions, if any, can be made wherever possible, however list them.
4. (a) Illustrate how the elements of two-dimensional array would be stored in 6
(i) Row Major Order
(ii) Column Major Order
(b) With the help of an example graph explain the shortest-path problem's solution.
5. Write short notes on the following :

$$
4 \times 2 \frac{1}{2}=10
$$

(a) Unions in C
(b) Spanning Tree
(c) Sparse Matrix
(d) Doubly Linked List

